Spaces:
Sleeping
Sleeping
Upload 2 files
Browse files
app.py
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
# AUTOGENERATED! DO NOT EDIT! File to edit: app.ipynb.
|
2 |
|
3 |
# %% auto 0
|
4 |
-
__all__ = ['learn', 'categories', 'image', 'label', 'examples', 'iface', 'classify_image']
|
5 |
|
6 |
# %% app.ipynb 1
|
7 |
import gradio as gr
|
@@ -15,15 +15,24 @@ learn = load_learner('model.pkl')
|
|
15 |
categories = ('Badminton', 'Cricket', 'Karate', 'Soccer', 'Swimming', 'Tennis', 'Wrestling')
|
16 |
|
17 |
# %% app.ipynb 4
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
def classify_image(img):
|
19 |
pred, idx, probs = learn.predict(img)
|
20 |
return dict(zip(categories, map(float, probs)))
|
21 |
|
22 |
-
# %% app.ipynb
|
23 |
image = gr.inputs.Image(shape(224, 224))
|
24 |
label = gr.outputs.Label()
|
25 |
examples = ['Badminton.jpg', 'Cricket.jpg', 'Karate.jpg', 'Soccer.jpg', 'Swimming.jpg', 'Tennis.jpg', 'Wrestling.jpg']
|
26 |
|
27 |
-
# %% app.ipynb
|
28 |
iface = gr.Interface(fn=classify_image, inputs=image, outputs=label, examples=examples)
|
29 |
iface.launch(inline=False)
|
|
|
1 |
# AUTOGENERATED! DO NOT EDIT! File to edit: app.ipynb.
|
2 |
|
3 |
# %% auto 0
|
4 |
+
__all__ = ['learn', 'categories', 'train_csv', 'n_inp', 'image', 'label', 'examples', 'iface', 'label_func', 'classify_image']
|
5 |
|
6 |
# %% app.ipynb 1
|
7 |
import gradio as gr
|
|
|
15 |
categories = ('Badminton', 'Cricket', 'Karate', 'Soccer', 'Swimming', 'Tennis', 'Wrestling')
|
16 |
|
17 |
# %% app.ipynb 4
|
18 |
+
import pandas as pd
|
19 |
+
train_csv = pd.read_csv('dataset/train.csv')
|
20 |
+
n_inp = len(set(train_csv['label']))
|
21 |
+
train_csv.head()
|
22 |
+
def label_func(item):
|
23 |
+
rel_path = str(item.relative_to('dataset/train'))
|
24 |
+
return train_csv[train_csv['image_ID']==rel_path]["label"].values[0]
|
25 |
+
|
26 |
+
# %% app.ipynb 5
|
27 |
def classify_image(img):
|
28 |
pred, idx, probs = learn.predict(img)
|
29 |
return dict(zip(categories, map(float, probs)))
|
30 |
|
31 |
+
# %% app.ipynb 6
|
32 |
image = gr.inputs.Image(shape(224, 224))
|
33 |
label = gr.outputs.Label()
|
34 |
examples = ['Badminton.jpg', 'Cricket.jpg', 'Karate.jpg', 'Soccer.jpg', 'Swimming.jpg', 'Tennis.jpg', 'Wrestling.jpg']
|
35 |
|
36 |
+
# %% app.ipynb 7
|
37 |
iface = gr.Interface(fn=classify_image, inputs=image, outputs=label, examples=examples)
|
38 |
iface.launch(inline=False)
|
train.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|