|
import gradio as gr |
|
from llama_cpp import Llama |
|
import json |
|
llm = Llama(model_path="./neuralhermes-2.5-mistral-7b.Q5_K_M.gguf", |
|
n_ctx=32768, |
|
n_threads=2, |
|
chat_format="chatml") |
|
|
|
|
|
def chat_completion(messages, history, system_prompt): |
|
messages_prompts = [{"role": "system", "content": system_prompt}] |
|
for human, assistant in history: |
|
messages_prompts.append({"role": "user", "content": human}) |
|
messages_prompts.append({"role": "assistant", "content": assistant}) |
|
messages_prompts.append({"role": "user", "content": messages}) |
|
response = llm.create_chat_completion( |
|
messages=messages_prompts, |
|
stream=False |
|
) |
|
print(json.dumps(response, ensure_ascii=False, indent=2)) |
|
return response['choices'][0]['content'] |
|
|
|
|
|
def chat_stream_completion(messages, history, system_prompt): |
|
messages_prompts = [{"role": "system", "content": system_prompt}] |
|
for human, assistant in history: |
|
messages_prompts.append({"role": "user", "content": human}) |
|
messages_prompts.append({"role": "assistant", "content": assistant}) |
|
messages_prompts.append({"role": "user", "content": messages}) |
|
response = llm.create_chat_completion( |
|
messages=messages_prompts, |
|
stream=True |
|
) |
|
partial_message = "" |
|
for chunk in response: |
|
if len(chunk['choices'][0]["delta"]) != 0 and "content" in chunk['choices'][0]["delta"]: |
|
partial_message = partial_message + \ |
|
chunk['choices'][0]["delta"]["content"] |
|
yield partial_message |
|
|
|
|
|
gr.ChatInterface(chat_stream_completion, |
|
additional_inputs=[gr.Textbox( |
|
"You are helpful AI.", label="System Prompt")] |
|
).queue().launch(server_name="0.0.0.0") |
|
|