Justin Zhang commited on
Commit
8ad415a
·
0 Parent(s):

Initial commit: AI-powered oncology insights platform

Browse files
.gitignore ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ .venv/
2
+ __pycache__/
3
+ *.pyc
4
+ .env
5
+ .env.*
6
+ .DS_Store
7
+ .ipynb_checkpoints/
.huggingface.yaml ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ sdk: streamlit
2
+ app_file: dashboard/app.py
3
+ python_version: 3.9
4
+ requirements_file: docs/requirements.txt
README.md ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # AI-Powered Oncology Insights Platform
2
+
3
+ ## Overview
4
+ This project demonstrates how AI and real-world data (RWD) can be leveraged to extract actionable insights in oncology. It simulates a workflow for clinical decision support, drug development, and patient outcome prediction using synthetic data and modern AI tools.
5
+
6
+ ## Features
7
+ - **Synthetic Oncology Data**: Simulated EHR, genomics, and treatment datasets.
8
+ - **NLP Pipelines**: Extract cancer staging, treatments, and adverse events from unstructured clinical notes.
9
+ - **Predictive Modeling**: Forecast patient survival or treatment response using XGBoost/LightGBM.
10
+ - **Clustering**: Identify patient subgroups with similar biomarker or treatment profiles.
11
+ - **Interactive Dashboards**: Visualize trends and model outputs with Streamlit or Dash.
12
+
13
+ ## Directory Structure
14
+ ```
15
+ 📦 oncology-ai-insights/
16
+ ├── README.md # Project overview, goals, and demo instructions
17
+ ├── data/ # Synthetic or anonymized RWD samples
18
+ ├── notebooks/ # Jupyter notebooks for analysis and modeling
19
+ ├── src/ # Python scripts for preprocessing, modeling, and visualization
20
+ ├── models/ # Saved model files and evaluation metrics
21
+ ├── dashboard/ # Streamlit or Dash app code
22
+ └── docs/ # Documentation and references
23
+ ```
24
+
25
+ ## Getting Started
26
+ 1. Clone the repository.
27
+ 2. Install requirements (see `docs/requirements.txt` or notebook cells).
28
+ 3. Explore the notebooks for data analysis and modeling.
29
+ 4. Run the dashboard app for interactive visualizations.
30
+
31
+ ## AI Tools & Techniques
32
+ | Tool/Technique | Purpose |
33
+ |----------------------|-------------------------------------------------------------------------|
34
+ | NLP | Extract clinical features from text |
35
+ | XGBoost/LightGBM | Predict outcomes |
36
+ | K-Means/DBSCAN | Patient subgroup discovery |
37
+ | Plotly/Streamlit | Data visualization and dashboards |
38
+ | Faker/Synthea | Synthetic data generation |
39
+
40
+ ## Impact
41
+ This project illustrates how AI can:
42
+ - Support oncologists in making data-driven decisions
43
+ - Identify clinical trial candidates
44
+ - Uncover hidden patterns in oncology RWD
45
+
46
+ ## Credits
47
+ Inspired by real-world oncology data science and Ontada-style data models.
48
+
49
+ ---
50
+
51
+ *For demo purposes only. No real patient data is used.*
dashboard/app.py ADDED
@@ -0,0 +1,42 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ import pandas as pd
3
+ import plotly.express as px
4
+
5
+ st.set_page_config(page_title="Oncology AI Insights Dashboard", layout="wide")
6
+ st.title("Oncology AI Insights Dashboard")
7
+
8
+ st.markdown("""
9
+ This dashboard visualizes synthetic oncology patient data and demonstrates how AI can support clinical insights.
10
+ """)
11
+
12
+ @st.cache_data
13
+ def load_data():
14
+ return pd.read_csv("../data/synthetic_oncology_patients.csv")
15
+
16
+ df = load_data()
17
+
18
+ # Sidebar filters
19
+ cancer_types = df['cancer_type'].unique().tolist()
20
+ st.sidebar.header("Filter Data")
21
+ selected_cancer = st.sidebar.multiselect("Cancer Type", cancer_types, default=cancer_types)
22
+
23
+ filtered_df = df[df['cancer_type'].isin(selected_cancer)]
24
+
25
+ # Main dashboard
26
+ st.subheader("Patient Demographics")
27
+ st.dataframe(filtered_df[['patient_id', 'age', 'gender', 'cancer_type', 'stage']])
28
+
29
+ st.subheader("Cancer Type Distribution")
30
+ fig1 = px.histogram(filtered_df, x="cancer_type", color="gender", barmode="group", title="Cancer Type by Gender")
31
+ st.plotly_chart(fig1, use_container_width=True)
32
+
33
+ st.subheader("Biomarker Status vs. Treatment")
34
+ fig2 = px.histogram(filtered_df, x="biomarker_status", color="treatment", barmode="group", title="Biomarker Status by Treatment")
35
+ st.plotly_chart(fig2, use_container_width=True)
36
+
37
+ st.subheader("Survival Time Distribution")
38
+ fig3 = px.histogram(filtered_df, x="survival_months", nbins=8, title="Distribution of Survival Time")
39
+ st.plotly_chart(fig3, use_container_width=True)
40
+
41
+ st.markdown("---")
42
+ st.markdown("*Demo only. No real patient data is used.*")
data/synthetic_oncology_patients.csv ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ patient_id,age,gender,cancer_type,stage,diagnosis_date,biomarker_status,treatment,adverse_event,survival_months
2
+ P001,67,F,Breast,II,2021-03-15,HER2+,Trastuzumab,None,28
3
+ P002,59,M,Lung,III,2020-11-02,EGFR+,Osimertinib,Rash,18
4
+ P003,72,F,Colorectal,IV,2019-07-21,BRAF-,FOLFOX,Neuropathy,12
5
+ P004,50,M,Prostate,II,2022-01-10,AR+,Abiraterone,None,30
6
+ P005,64,F,Ovarian,III,2021-06-18,BRCA1+,Carboplatin,Neutropenia,22
7
+ P006,55,M,Lung,II,2022-04-05,ALK+,Alectinib,None,16
8
+ P007,70,F,Breast,IV,2020-09-30,HER2-,Paclitaxel,Neuropathy,10
9
+ P008,62,M,Colorectal,III,2021-12-12,BRAF+,FOLFIRI,Diarrhea,20
10
+ P009,48,F,Ovarian,II,2022-05-25,BRCA2-,Paclitaxel,None,26
11
+ P010,75,M,Prostate,IV,2019-02-14,AR-,Docetaxel,Fatigue,8
docs/requirements.txt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ streamlit
2
+ pandas
3
+ plotly
notebooks/01_data_exploration.ipynb ADDED
@@ -0,0 +1,123 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "markdown",
5
+ "id": "9f06e834",
6
+ "metadata": {},
7
+ "source": [
8
+ "# Oncology RWD: Data Exploration\n",
9
+ "This notebook explores synthetic oncology patient data, simulating EHR and biomarker records."
10
+ ]
11
+ },
12
+ {
13
+ "cell_type": "code",
14
+ "execution_count": null,
15
+ "id": "a51fb3f6",
16
+ "metadata": {},
17
+ "outputs": [],
18
+ "source": [
19
+ "# Import libraries\n",
20
+ "import pandas as pd\n",
21
+ "import matplotlib.pyplot as plt\n",
22
+ "import seaborn as sns"
23
+ ]
24
+ },
25
+ {
26
+ "cell_type": "code",
27
+ "execution_count": null,
28
+ "id": "48479ace",
29
+ "metadata": {},
30
+ "outputs": [],
31
+ "source": [
32
+ "# Load synthetic data\n",
33
+ "df = pd.read_csv('../data/synthetic_oncology_patients.csv')\n",
34
+ "df.head()"
35
+ ]
36
+ },
37
+ {
38
+ "cell_type": "markdown",
39
+ "id": "ba0324c5",
40
+ "metadata": {},
41
+ "source": [
42
+ "## Patient Demographics"
43
+ ]
44
+ },
45
+ {
46
+ "cell_type": "code",
47
+ "execution_count": null,
48
+ "id": "525868d7",
49
+ "metadata": {},
50
+ "outputs": [],
51
+ "source": [
52
+ "# Demographic summary\n",
53
+ "df[['age', 'gender', 'cancer_type', 'stage']].describe(include='all')"
54
+ ]
55
+ },
56
+ {
57
+ "cell_type": "markdown",
58
+ "id": "f872f204",
59
+ "metadata": {},
60
+ "source": [
61
+ "## Cancer Type Distribution"
62
+ ]
63
+ },
64
+ {
65
+ "cell_type": "code",
66
+ "execution_count": null,
67
+ "id": "8b89480d",
68
+ "metadata": {},
69
+ "outputs": [],
70
+ "source": [
71
+ "sns.countplot(data=df, x='cancer_type', hue='gender')\n",
72
+ "plt.title('Cancer Type by Gender')\n",
73
+ "plt.show()"
74
+ ]
75
+ },
76
+ {
77
+ "cell_type": "markdown",
78
+ "id": "d158309e",
79
+ "metadata": {},
80
+ "source": [
81
+ "## Biomarker Status vs. Treatment"
82
+ ]
83
+ },
84
+ {
85
+ "cell_type": "code",
86
+ "execution_count": null,
87
+ "id": "a878a045",
88
+ "metadata": {},
89
+ "outputs": [],
90
+ "source": [
91
+ "pd.crosstab(df['biomarker_status'], df['treatment'])"
92
+ ]
93
+ },
94
+ {
95
+ "cell_type": "markdown",
96
+ "id": "50dd531c",
97
+ "metadata": {},
98
+ "source": [
99
+ "## Survival Analysis (Simple)"
100
+ ]
101
+ },
102
+ {
103
+ "cell_type": "code",
104
+ "execution_count": null,
105
+ "id": "8a9cf12f",
106
+ "metadata": {},
107
+ "outputs": [],
108
+ "source": [
109
+ "sns.histplot(df['survival_months'], bins=8, kde=True)\n",
110
+ "plt.xlabel('Survival (months)')\n",
111
+ "plt.title('Distribution of Survival Time')\n",
112
+ "plt.show()"
113
+ ]
114
+ }
115
+ ],
116
+ "metadata": {
117
+ "language_info": {
118
+ "name": "python"
119
+ }
120
+ },
121
+ "nbformat": 4,
122
+ "nbformat_minor": 5
123
+ }