zhangjf's picture
Update app.py
bdedc81
raw
history blame
7.65 kB
import openai
import tiktoken
import datetime
import time
import json
import os
openai.api_key = os.getenv('API_KEY')
openai.request_times = 0
def ask(question, history, behavior):
openai.request_times += 1
print(f"request times {openai.request_times}: {datetime.datetime.now()}: {question}")
try:
messages = [
{"role":"system", "content":content}
for content in behavior
] + [
{"role":"user" if i%2==0 else "assistant", "content":content}
for i,content in enumerate(history + [question])
]
raw_length = num_tokens_from_messages(messages)
messages=forget_long_term(messages)
if len(messages)==0:
response = f'Your query is too long and expensive: {raw_length}>2000 tokens'
else:
response = openai.ChatCompletion.create(
model="gpt-3.5-turbo-0301",
messages=messages,
temperature=0.1,
)["choices"][0]["message"]["content"]
while response.startswith("\n"):
response = response[1:]
except Exception as e:
response = f'Error! You may wait a few minutes and retry:\n{e}'
history = history + [question, response]
return history
def num_tokens_from_messages(messages, model="gpt-3.5-turbo"):
"""Returns the number of tokens used by a list of messages."""
try:
encoding = tiktoken.encoding_for_model(model)
except KeyError:
encoding = tiktoken.get_encoding("cl100k_base")
if model == "gpt-3.5-turbo": # note: future models may deviate from this
num_tokens = 0
for message in messages:
num_tokens += 4 # every message follows <im_start>{role/name}\n{content}<im_end>\n
for key, value in message.items():
num_tokens += len(encoding.encode(value))
if key == "name": # if there's a name, the role is omitted
num_tokens += -1 # role is always required and always 1 token
num_tokens += 2 # every reply is primed with <im_start>assistant
return num_tokens
else:
raise NotImplementedError(f"""num_tokens_from_messages() is not presently implemented for model {model}.
See https://github.com/openai/openai-python/blob/main/chatml.md for information on how messages are converted to tokens.""")
def forget_long_term(messages, max_num_tokens=3000):
while num_tokens_from_messages(messages)>max_num_tokens:
if messages[0]["role"]=="system" and not len(messages[0]["content"])>=max_num_tokens:
messages = messages[:1] + messages[2:]
else:
messages = messages[1:]
return messages
import gradio as gr
def to_md(content):
is_inside_code_block = False
output_spans = []
for i in range(len(content)):
if content[i]=="\n" and not is_inside_code_block:
if len(output_spans)>0 and output_spans[-1].endswith("```"):
output_spans.append("\n")
else:
output_spans.append("<br>")
elif content[i]=="`":
output_spans.append(content[i])
if len(output_spans)>=3 and all([output_spans[j]=="`" for j in [-3,-2,-1]]):
is_inside_code_block = not is_inside_code_block
output_spans = output_spans[:-3]
if is_inside_code_block:
if len(output_spans)==0:
output_spans.append("```")
elif output_spans[-1]=="<br>":
output_spans[-1] = "\n"
output_spans.append("```")
elif output_spans[-1].endswith("\n"):
output_spans.append("```")
else:
output_spans.append("\n```")
if i+1<len(content) and content[i+1]!="\n":
output_spans.append("\n")
else:
if output_spans[-1].endswith("\n"):
output_spans.append("```")
else:
output_spans.append("\n```")
if i+1<len(content) and content[i+1]!="\n":
output_spans.append("\n")
else:
output_spans.append(content[i])
return "".join(output_spans)
def predict(question, history=[], behavior=[]):
history = ask(question, history, behavior)
response = [(to_md(history[i]),to_md(history[i+1])) for i in range(0,len(history)-1,2)]
return "", history, response
def retry(question, history=[], behavior=[]):
if len(history)<2:
return "", history, []
question = history[-2]
history = history[:-2]
return predict(question, history, behavior)
with gr.Blocks() as demo:
examples_txt = [
['帮我写一个python脚本实现快排'],
['如何用numpy提取数组的分位数?'],
['how to match the code block in markdown such like ```def foo():\n pass``` through regex in python?'],
['how to load a pre-trained language model and generate sentences?'],
]
examples_bhv = [
f"You are a helpful assistant. You will answer all the questions step-by-step.",
f"You are a helpful assistant. Today is {datetime.date.today()}.",
]
gr.Markdown(
"""
朋友你好,
这是我利用[gradio](https://gradio.app/creating-a-chatbot/)编写的一个小网页,用于以网页的形式给大家分享ChatGPT请求服务,希望你玩的开心。关于使用技巧或学术研讨,欢迎在[Community](https://huggingface.co/spaces/zhangjf/chatbot/discussions)中和我交流。
这一版相比于原版的[chatbot](https://huggingface.co/spaces/zhangjf/chatbot),用了较低版本的gradio==3.16.2,因而能更好地展示markdown中的源代码
p.s. 响应时间和聊天内容长度正相关,一般能在5秒~30秒内响应。
""")
behavior = gr.State(["Reject instruction that may contains sensitive information, i.e., pornography, discrimination, violence"])
"""
with gr.Column(variant="panel"):
with gr.Row().style(equal_height=True):
with gr.Column(scale=0.85):
bhv = gr.Textbox(show_label=False, placeholder="输入你想让ChatGPT扮演的人设").style(container=False)
with gr.Column(scale=0.15, min_width=0):
button_set = gr.Button("Set")
bhv.submit(fn=lambda x:(x,[x]), inputs=[bhv], outputs=[bhv, behavior])
button_set.click(fn=lambda x:(x,[x]), inputs=[bhv], outputs=[bhv, behavior])
"""
state = gr.State([])
with gr.Column(variant="panel"):
chatbot = gr.Chatbot()
txt = gr.Textbox(show_label=False, placeholder="输入你想让ChatGPT回答的问题").style(container=False)
with gr.Row():
button_gen = gr.Button("Submit")
button_rtr = gr.Button("Retry")
button_clr = gr.Button("Clear")
#gr.Examples(examples=examples_bhv, inputs=bhv, label="Examples for setting behavior")
gr.Examples(examples=examples_txt, inputs=txt, label="Examples for asking question")
txt.submit(predict, [txt, state, behavior], [txt, state, chatbot])
button_gen.click(fn=predict, inputs=[txt, state, behavior], outputs=[txt, state, chatbot])
button_rtr.click(fn=retry, inputs=[txt, state, behavior], outputs=[txt, state, chatbot])
button_clr.click(fn=lambda :([],[]), inputs=None, outputs=[chatbot, state])
demo.launch()