|
import argparse |
|
import json |
|
from PIL import Image |
|
from torchvision import transforms |
|
import torch.nn.functional as F |
|
from glob import glob |
|
|
|
import cv2 |
|
import math |
|
import numpy as np |
|
import os |
|
import os.path as osp |
|
import random |
|
import time |
|
import torch |
|
from pathlib import Path |
|
from torch.utils import data as data |
|
|
|
from basicsr.utils import DiffJPEG, USMSharp |
|
from basicsr.utils.img_process_util import filter2D |
|
from basicsr.data.transforms import paired_random_crop, triplet_random_crop |
|
from basicsr.data.degradations import random_add_gaussian_noise_pt, random_add_poisson_noise_pt, random_add_speckle_noise_pt, random_add_saltpepper_noise_pt, bivariate_Gaussian |
|
|
|
from basicsr.data.degradations import circular_lowpass_kernel, random_mixed_kernels |
|
from basicsr.data.transforms import augment |
|
from basicsr.utils import FileClient, get_root_logger, imfrombytes, img2tensor |
|
from basicsr.utils.registry import DATASET_REGISTRY |
|
|
|
|
|
def parse_args_paired_testing(input_args=None): |
|
""" |
|
Parses command-line arguments used for configuring an paired session (pix2pix-Turbo). |
|
This function sets up an argument parser to handle various training options. |
|
|
|
Returns: |
|
argparse.Namespace: The parsed command-line arguments. |
|
""" |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument("--ref_path", type=str, default=None,) |
|
parser.add_argument("--base_config", default="./configs/sr_test.yaml", type=str) |
|
parser.add_argument("--tracker_project_name", type=str, default="train_pix2pix_turbo", help="The name of the wandb project to log to.") |
|
|
|
|
|
parser.add_argument("--sd_path") |
|
parser.add_argument("--de_net_path") |
|
parser.add_argument("--pretrained_path", type=str, default=None,) |
|
parser.add_argument("--revision", type=str, default=None,) |
|
parser.add_argument("--variant", type=str, default=None,) |
|
parser.add_argument("--tokenizer_name", type=str, default=None) |
|
parser.add_argument("--lora_rank_unet", default=32, type=int) |
|
parser.add_argument("--lora_rank_vae", default=16, type=int) |
|
|
|
parser.add_argument("--scale", type=int, default=4, help="Scale factor for SR.") |
|
parser.add_argument("--chop_size", type=int, default=128, choices=[512, 256, 128], help="Chopping forward.") |
|
parser.add_argument("--chop_stride", type=int, default=96, help="Chopping stride.") |
|
parser.add_argument("--padding_offset", type=int, default=32, help="padding offset.") |
|
|
|
parser.add_argument("--vae_decoder_tiled_size", type=int, default=224) |
|
parser.add_argument("--vae_encoder_tiled_size", type=int, default=1024) |
|
parser.add_argument("--latent_tiled_size", type=int, default=96) |
|
parser.add_argument("--latent_tiled_overlap", type=int, default=32) |
|
|
|
parser.add_argument("--align_method", type=str, default="wavelet") |
|
|
|
parser.add_argument("--pos_prompt", type=str, default="A high-resolution, 8K, ultra-realistic image with sharp focus, vibrant colors, and natural lighting.") |
|
parser.add_argument("--neg_prompt", type=str, default="oil painting, cartoon, blur, dirty, messy, low quality, deformation, low resolution, oversmooth") |
|
|
|
|
|
parser.add_argument("--output_dir", type=str, default='output/') |
|
parser.add_argument("--cache_dir", default=None,) |
|
parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.") |
|
parser.add_argument("--resolution", type=int, default=512,) |
|
parser.add_argument("--checkpointing_steps", type=int, default=500,) |
|
parser.add_argument("--gradient_accumulation_steps", type=int, default=1, help="Number of updates steps to accumulate before performing a backward/update pass.",) |
|
parser.add_argument("--gradient_checkpointing", action="store_true",) |
|
|
|
parser.add_argument("--dataloader_num_workers", type=int, default=0,) |
|
parser.add_argument("--allow_tf32", action="store_true", |
|
help=( |
|
"Whether or not to allow TF32 on Ampere GPUs. Can be used to speed up training. For more information, see" |
|
" https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices" |
|
), |
|
) |
|
parser.add_argument("--report_to", type=str, default="wandb", |
|
help=( |
|
'The integration to report the results and logs to. Supported platforms are `"tensorboard"`' |
|
' (default), `"wandb"` and `"comet_ml"`. Use `"all"` to report to all integrations.' |
|
), |
|
) |
|
parser.add_argument("--mixed_precision", type=str, default=None, choices=["no", "fp16", "bf16"],) |
|
parser.add_argument("--enable_xformers_memory_efficient_attention", action="store_true", help="Whether or not to use xformers.") |
|
parser.add_argument("--set_grads_to_none", action="store_true",) |
|
|
|
parser.add_argument('--world_size', default=1, type=int, |
|
help='number of distributed processes') |
|
parser.add_argument('--local_rank', default=-1, type=int) |
|
parser.add_argument('--dist_url', default='env://', |
|
help='url used to set up distributed training') |
|
|
|
if input_args is not None: |
|
args = parser.parse_args(input_args) |
|
else: |
|
args = parser.parse_args() |
|
|
|
return args |
|
|
|
|
|
class PlainDataset(data.Dataset): |
|
"""Modified dataset based on the dataset used for Real-ESRGAN model: |
|
Real-ESRGAN: Training Real-World Blind Super-Resolution with Pure Synthetic Data. |
|
|
|
It loads gt (Ground-Truth) images, and augments them. |
|
It also generates blur kernels and sinc kernels for generating low-quality images. |
|
Note that the low-quality images are processed in tensors on GPUS for faster processing. |
|
|
|
Args: |
|
opt (dict): Config for train datasets. It contains the following keys: |
|
dataroot_gt (str): Data root path for gt. |
|
meta_info (str): Path for meta information file. |
|
io_backend (dict): IO backend type and other kwarg. |
|
use_hflip (bool): Use horizontal flips. |
|
use_rot (bool): Use rotation (use vertical flip and transposing h and w for implementation). |
|
Please see more options in the codes. |
|
""" |
|
|
|
def __init__(self, opt): |
|
super(PlainDataset, self).__init__() |
|
self.opt = opt |
|
self.file_client = None |
|
self.io_backend_opt = opt['io_backend'] |
|
|
|
if 'image_type' not in opt: |
|
opt['image_type'] = 'png' |
|
|
|
|
|
self.lr_paths = [] |
|
if 'lr_path' in opt: |
|
if isinstance(opt['lr_path'], str): |
|
self.lr_paths.extend(sorted( |
|
[str(x) for x in Path(opt['lr_path']).glob('*.png')] + |
|
[str(x) for x in Path(opt['lr_path']).glob('*.jpg')] + |
|
[str(x) for x in Path(opt['lr_path']).glob('*.jpeg')] |
|
)) |
|
else: |
|
self.lr_paths.extend(sorted([str(x) for x in Path(opt['lr_path'][0]).glob('*.'+opt['image_type'])])) |
|
if len(opt['lr_path']) > 1: |
|
for i in range(len(opt['lr_path'])-1): |
|
self.lr_paths.extend(sorted([str(x) for x in Path(opt['lr_path'][i+1]).glob('*.'+opt['image_type'])])) |
|
|
|
def __getitem__(self, index): |
|
if self.file_client is None: |
|
self.file_client = FileClient(self.io_backend_opt.pop('type'), **self.io_backend_opt) |
|
|
|
|
|
|
|
lr_path = self.lr_paths[index] |
|
|
|
|
|
retry = 3 |
|
while retry > 0: |
|
try: |
|
lr_img_bytes = self.file_client.get(lr_path, 'gt') |
|
except (IOError, OSError) as e: |
|
|
|
|
|
|
|
index = random.randint(0, self.__len__()-1) |
|
lr_path = self.lr_paths[index] |
|
time.sleep(1) |
|
else: |
|
break |
|
finally: |
|
retry -= 1 |
|
|
|
img_lr = imfrombytes(lr_img_bytes, float32=True) |
|
|
|
|
|
img_lr = img2tensor([img_lr], bgr2rgb=True, float32=True)[0] |
|
|
|
return_d = {'lr': img_lr, 'lr_path': lr_path} |
|
return return_d |
|
|
|
def __len__(self): |
|
return len(self.lr_paths) |
|
|
|
|
|
def lr_proc(config, batch, device): |
|
im_lr = batch['lr'].cuda() |
|
im_lr = im_lr.to(memory_format=torch.contiguous_format).float() |
|
|
|
ori_lr = im_lr |
|
|
|
im_lr = F.interpolate( |
|
im_lr, |
|
size=(im_lr.size(-2) * config.sf, |
|
im_lr.size(-1) * config.sf), |
|
mode='bicubic', |
|
) |
|
|
|
im_lr = im_lr.contiguous() |
|
im_lr = im_lr * 2 - 1.0 |
|
im_lr = torch.clamp(im_lr, -1.0, 1.0) |
|
|
|
ori_h, ori_w = im_lr.size(-2), im_lr.size(-1) |
|
|
|
pad_h = (math.ceil(ori_h / 64)) * 64 - ori_h |
|
pad_w = (math.ceil(ori_w / 64)) * 64 - ori_w |
|
im_lr = F.pad(im_lr, pad=(0, pad_w, 0, pad_h), mode='reflect') |
|
|
|
return im_lr.to(device), ori_lr.to(device), (ori_h, ori_w) |
|
|