|
import argparse |
|
import os |
|
import random |
|
import torch |
|
import yaml |
|
from collections import OrderedDict |
|
from os import path as osp |
|
|
|
from basicsr.utils import set_random_seed |
|
from basicsr.utils.dist_util import get_dist_info, init_dist, master_only |
|
|
|
|
|
def ordered_yaml(): |
|
"""Support OrderedDict for yaml. |
|
|
|
Returns: |
|
tuple: yaml Loader and Dumper. |
|
""" |
|
try: |
|
from yaml import CDumper as Dumper |
|
from yaml import CLoader as Loader |
|
except ImportError: |
|
from yaml import Dumper, Loader |
|
|
|
_mapping_tag = yaml.resolver.BaseResolver.DEFAULT_MAPPING_TAG |
|
|
|
def dict_representer(dumper, data): |
|
return dumper.represent_dict(data.items()) |
|
|
|
def dict_constructor(loader, node): |
|
return OrderedDict(loader.construct_pairs(node)) |
|
|
|
Dumper.add_representer(OrderedDict, dict_representer) |
|
Loader.add_constructor(_mapping_tag, dict_constructor) |
|
return Loader, Dumper |
|
|
|
|
|
def yaml_load(f): |
|
"""Load yaml file or string. |
|
|
|
Args: |
|
f (str): File path or a python string. |
|
|
|
Returns: |
|
dict: Loaded dict. |
|
""" |
|
if os.path.isfile(f): |
|
with open(f, 'r') as f: |
|
return yaml.load(f, Loader=ordered_yaml()[0]) |
|
else: |
|
return yaml.load(f, Loader=ordered_yaml()[0]) |
|
|
|
|
|
def dict2str(opt, indent_level=1): |
|
"""dict to string for printing options. |
|
|
|
Args: |
|
opt (dict): Option dict. |
|
indent_level (int): Indent level. Default: 1. |
|
|
|
Return: |
|
(str): Option string for printing. |
|
""" |
|
msg = '\n' |
|
for k, v in opt.items(): |
|
if isinstance(v, dict): |
|
msg += ' ' * (indent_level * 2) + k + ':[' |
|
msg += dict2str(v, indent_level + 1) |
|
msg += ' ' * (indent_level * 2) + ']\n' |
|
else: |
|
msg += ' ' * (indent_level * 2) + k + ': ' + str(v) + '\n' |
|
return msg |
|
|
|
|
|
def _postprocess_yml_value(value): |
|
|
|
if value == '~' or value.lower() == 'none': |
|
return None |
|
|
|
if value.lower() == 'true': |
|
return True |
|
elif value.lower() == 'false': |
|
return False |
|
|
|
if value.startswith('!!float'): |
|
return float(value.replace('!!float', '')) |
|
|
|
if value.isdigit(): |
|
return int(value) |
|
elif value.replace('.', '', 1).isdigit() and value.count('.') < 2: |
|
return float(value) |
|
|
|
if value.startswith('['): |
|
return eval(value) |
|
|
|
return value |
|
|
|
|
|
def parse_options(root_path, is_train=True): |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument('-opt', type=str, required=True, help='Path to option YAML file.') |
|
parser.add_argument('--launcher', choices=['none', 'pytorch', 'slurm'], default='none', help='job launcher') |
|
parser.add_argument('--auto_resume', action='store_true') |
|
parser.add_argument('--debug', action='store_true') |
|
parser.add_argument('--local_rank', type=int, default=0) |
|
parser.add_argument( |
|
'--force_yml', nargs='+', default=None, help='Force to update yml files. Examples: train:ema_decay=0.999') |
|
args = parser.parse_args() |
|
|
|
|
|
opt = yaml_load(args.opt) |
|
|
|
|
|
if args.launcher == 'none': |
|
opt['dist'] = False |
|
print('Disable distributed.', flush=True) |
|
else: |
|
opt['dist'] = True |
|
if args.launcher == 'slurm' and 'dist_params' in opt: |
|
init_dist(args.launcher, **opt['dist_params']) |
|
else: |
|
init_dist(args.launcher) |
|
opt['rank'], opt['world_size'] = get_dist_info() |
|
|
|
|
|
seed = opt.get('manual_seed') |
|
if seed is None: |
|
seed = random.randint(1, 10000) |
|
opt['manual_seed'] = seed |
|
set_random_seed(seed + opt['rank']) |
|
|
|
|
|
if args.force_yml is not None: |
|
for entry in args.force_yml: |
|
|
|
keys, value = entry.split('=') |
|
keys, value = keys.strip(), value.strip() |
|
value = _postprocess_yml_value(value) |
|
eval_str = 'opt' |
|
for key in keys.split(':'): |
|
eval_str += f'["{key}"]' |
|
eval_str += '=value' |
|
|
|
exec(eval_str) |
|
|
|
opt['auto_resume'] = args.auto_resume |
|
opt['is_train'] = is_train |
|
|
|
|
|
if args.debug and not opt['name'].startswith('debug'): |
|
opt['name'] = 'debug_' + opt['name'] |
|
|
|
if opt['num_gpu'] == 'auto': |
|
opt['num_gpu'] = torch.cuda.device_count() |
|
|
|
|
|
for phase, dataset in opt['datasets'].items(): |
|
|
|
phase = phase.split('_')[0] |
|
dataset['phase'] = phase |
|
if 'scale' in opt: |
|
dataset['scale'] = opt['scale'] |
|
if dataset.get('dataroot_gt') is not None: |
|
dataset['dataroot_gt'] = osp.expanduser(dataset['dataroot_gt']) |
|
if dataset.get('dataroot_lq') is not None: |
|
dataset['dataroot_lq'] = osp.expanduser(dataset['dataroot_lq']) |
|
|
|
|
|
for key, val in opt['path'].items(): |
|
if (val is not None) and ('resume_state' in key or 'pretrain_network' in key): |
|
opt['path'][key] = osp.expanduser(val) |
|
|
|
if is_train: |
|
experiments_root = osp.join(root_path, 'experiments', opt['name']) |
|
opt['path']['experiments_root'] = experiments_root |
|
opt['path']['models'] = osp.join(experiments_root, 'models') |
|
opt['path']['training_states'] = osp.join(experiments_root, 'training_states') |
|
opt['path']['log'] = experiments_root |
|
opt['path']['visualization'] = osp.join(experiments_root, 'visualization') |
|
|
|
|
|
if 'debug' in opt['name']: |
|
if 'val' in opt: |
|
opt['val']['val_freq'] = 8 |
|
opt['logger']['print_freq'] = 1 |
|
opt['logger']['save_checkpoint_freq'] = 8 |
|
else: |
|
results_root = osp.join(root_path, 'results', opt['name']) |
|
opt['path']['results_root'] = results_root |
|
opt['path']['log'] = results_root |
|
opt['path']['visualization'] = osp.join(results_root, 'visualization') |
|
|
|
return opt, args |
|
|
|
|
|
@master_only |
|
def copy_opt_file(opt_file, experiments_root): |
|
|
|
import sys |
|
import time |
|
from shutil import copyfile |
|
cmd = ' '.join(sys.argv) |
|
filename = osp.join(experiments_root, osp.basename(opt_file)) |
|
copyfile(opt_file, filename) |
|
|
|
with open(filename, 'r+') as f: |
|
lines = f.readlines() |
|
lines.insert(0, f'# GENERATE TIME: {time.asctime()}\n# CMD:\n# {cmd}\n\n') |
|
f.seek(0) |
|
f.writelines(lines) |
|
|