S3Diff / src /s3diff.py
zhangap's picture
Upload 213 files
36d9761 verified
raw
history blame
13.2 kB
import os
import re
import requests
import sys
import copy
import numpy as np
from tqdm import tqdm
import torch
import torch.nn as nn
from transformers import AutoTokenizer, CLIPTextModel
from diffusers import AutoencoderKL, UNet2DConditionModel
from peft import LoraConfig, get_peft_model
p = "src/"
sys.path.append(p)
from model import make_1step_sched, my_lora_fwd
from basicsr.archs.arch_util import default_init_weights
def get_layer_number(module_name):
base_layers = {
'down_blocks': 0,
'mid_block': 4,
'up_blocks': 5
}
if module_name == 'conv_out':
return 9
base_layer = None
for key in base_layers:
if key in module_name:
base_layer = base_layers[key]
break
if base_layer is None:
return None
additional_layers = int(re.findall(r'\.(\d+)', module_name)[0]) #sum(int(num) for num in re.findall(r'\d+', module_name))
final_layer = base_layer + additional_layers
return final_layer
class S3Diff(torch.nn.Module):
def __init__(self, sd_path=None, pretrained_path=None, lora_rank_unet=32, lora_rank_vae=16, block_embedding_dim=64):
super().__init__()
self.tokenizer = AutoTokenizer.from_pretrained(sd_path, subfolder="tokenizer")
self.text_encoder = CLIPTextModel.from_pretrained(sd_path, subfolder="text_encoder").cuda()
self.sched = make_1step_sched(sd_path)
vae = AutoencoderKL.from_pretrained(sd_path, subfolder="vae")
unet = UNet2DConditionModel.from_pretrained(sd_path, subfolder="unet")
target_modules_vae = r"^encoder\..*(conv1|conv2|conv_in|conv_shortcut|conv|conv_out|to_k|to_q|to_v|to_out\.0)$"
target_modules_unet = [
"to_k", "to_q", "to_v", "to_out.0", "conv", "conv1", "conv2", "conv_shortcut", "conv_out",
"proj_in", "proj_out", "ff.net.2", "ff.net.0.proj"
]
num_embeddings = 64
self.W = nn.Parameter(torch.randn(num_embeddings), requires_grad=False)
self.vae_de_mlp = nn.Sequential(
nn.Linear(num_embeddings * 4, 256),
nn.ReLU(True),
)
self.unet_de_mlp = nn.Sequential(
nn.Linear(num_embeddings * 4, 256),
nn.ReLU(True),
)
self.vae_block_mlp = nn.Sequential(
nn.Linear(block_embedding_dim, 64),
nn.ReLU(True),
)
self.unet_block_mlp = nn.Sequential(
nn.Linear(block_embedding_dim, 64),
nn.ReLU(True),
)
self.vae_fuse_mlp = nn.Linear(256 + 64, lora_rank_vae ** 2)
self.unet_fuse_mlp = nn.Linear(256 + 64, lora_rank_unet ** 2)
default_init_weights([self.vae_de_mlp, self.unet_de_mlp, self.vae_block_mlp, self.unet_block_mlp, \
self.vae_fuse_mlp, self.unet_fuse_mlp], 1e-5)
# vae
self.vae_block_embeddings = nn.Embedding(6, block_embedding_dim)
self.unet_block_embeddings = nn.Embedding(10, block_embedding_dim)
if pretrained_path is not None:
sd = torch.load(pretrained_path, map_location="cpu")
vae_lora_config = LoraConfig(r=sd["rank_vae"], init_lora_weights="gaussian", target_modules=sd["vae_lora_target_modules"])
vae.add_adapter(vae_lora_config, adapter_name="vae_skip")
_sd_vae = vae.state_dict()
for k in sd["state_dict_vae"]:
_sd_vae[k] = sd["state_dict_vae"][k]
vae.load_state_dict(_sd_vae)
unet_lora_config = LoraConfig(r=sd["rank_unet"], init_lora_weights="gaussian", target_modules=sd["unet_lora_target_modules"])
unet.add_adapter(unet_lora_config)
_sd_unet = unet.state_dict()
for k in sd["state_dict_unet"]:
_sd_unet[k] = sd["state_dict_unet"][k]
unet.load_state_dict(_sd_unet)
_vae_de_mlp = self.vae_de_mlp.state_dict()
for k in sd["state_dict_vae_de_mlp"]:
_vae_de_mlp[k] = sd["state_dict_vae_de_mlp"][k]
self.vae_de_mlp.load_state_dict(_vae_de_mlp)
_unet_de_mlp = self.unet_de_mlp.state_dict()
for k in sd["state_dict_unet_de_mlp"]:
_unet_de_mlp[k] = sd["state_dict_unet_de_mlp"][k]
self.unet_de_mlp.load_state_dict(_unet_de_mlp)
_vae_block_mlp = self.vae_block_mlp.state_dict()
for k in sd["state_dict_vae_block_mlp"]:
_vae_block_mlp[k] = sd["state_dict_vae_block_mlp"][k]
self.vae_block_mlp.load_state_dict(_vae_block_mlp)
_unet_block_mlp = self.unet_block_mlp.state_dict()
for k in sd["state_dict_unet_block_mlp"]:
_unet_block_mlp[k] = sd["state_dict_unet_block_mlp"][k]
self.unet_block_mlp.load_state_dict(_unet_block_mlp)
_vae_fuse_mlp = self.vae_fuse_mlp.state_dict()
for k in sd["state_dict_vae_fuse_mlp"]:
_vae_fuse_mlp[k] = sd["state_dict_vae_fuse_mlp"][k]
self.vae_fuse_mlp.load_state_dict(_vae_fuse_mlp)
_unet_fuse_mlp = self.unet_fuse_mlp.state_dict()
for k in sd["state_dict_unet_fuse_mlp"]:
_unet_fuse_mlp[k] = sd["state_dict_unet_fuse_mlp"][k]
self.unet_fuse_mlp.load_state_dict(_unet_fuse_mlp)
self.W = nn.Parameter(sd["w"], requires_grad=False)
embeddings_state_dict = sd["state_embeddings"]
self.vae_block_embeddings.load_state_dict(embeddings_state_dict['state_dict_vae_block'])
self.unet_block_embeddings.load_state_dict(embeddings_state_dict['state_dict_unet_block'])
else:
print("Initializing model with random weights")
vae_lora_config = LoraConfig(r=lora_rank_vae, init_lora_weights="gaussian",
target_modules=target_modules_vae)
vae.add_adapter(vae_lora_config, adapter_name="vae_skip")
unet_lora_config = LoraConfig(r=lora_rank_unet, init_lora_weights="gaussian",
target_modules=target_modules_unet
)
unet.add_adapter(unet_lora_config)
self.lora_rank_unet = lora_rank_unet
self.lora_rank_vae = lora_rank_vae
self.target_modules_vae = target_modules_vae
self.target_modules_unet = target_modules_unet
self.vae_lora_layers = []
for name, module in vae.named_modules():
if 'base_layer' in name:
self.vae_lora_layers.append(name[:-len(".base_layer")])
for name, module in vae.named_modules():
if name in self.vae_lora_layers:
module.forward = my_lora_fwd.__get__(module, module.__class__)
self.unet_lora_layers = []
for name, module in unet.named_modules():
if 'base_layer' in name:
self.unet_lora_layers.append(name[:-len(".base_layer")])
for name, module in unet.named_modules():
if name in self.unet_lora_layers:
module.forward = my_lora_fwd.__get__(module, module.__class__)
self.unet_layer_dict = {name: get_layer_number(name) for name in self.unet_lora_layers}
unet.to("cuda")
vae.to("cuda")
self.unet, self.vae = unet, vae
self.timesteps = torch.tensor([999], device="cuda").long()
self.text_encoder.requires_grad_(False)
def set_eval(self):
self.unet.eval()
self.vae.eval()
self.vae_de_mlp.eval()
self.unet_de_mlp.eval()
self.vae_block_mlp.eval()
self.unet_block_mlp.eval()
self.vae_fuse_mlp.eval()
self.unet_fuse_mlp.eval()
self.vae_block_embeddings.requires_grad_(False)
self.unet_block_embeddings.requires_grad_(False)
self.unet.requires_grad_(False)
self.vae.requires_grad_(False)
def set_train(self):
self.unet.train()
self.vae.train()
self.vae_de_mlp.train()
self.unet_de_mlp.train()
self.vae_block_mlp.train()
self.unet_block_mlp.train()
self.vae_fuse_mlp.train()
self.unet_fuse_mlp.train()
self.vae_block_embeddings.requires_grad_(True)
self.unet_block_embeddings.requires_grad_(True)
for n, _p in self.unet.named_parameters():
if "lora" in n:
_p.requires_grad = True
self.unet.conv_in.requires_grad_(True)
for n, _p in self.vae.named_parameters():
if "lora" in n:
_p.requires_grad = True
def forward(self, c_t, deg_score, prompt):
if prompt is not None:
# encode the text prompt
caption_tokens = self.tokenizer(prompt, max_length=self.tokenizer.model_max_length,
padding="max_length", truncation=True, return_tensors="pt").input_ids.cuda()
caption_enc = self.text_encoder(caption_tokens)[0]
else:
caption_enc = self.text_encoder(prompt_tokens)[0]
# degradation fourier embedding
deg_proj = deg_score[..., None] * self.W[None, None, :] * 2 * np.pi
deg_proj = torch.cat([torch.sin(deg_proj), torch.cos(deg_proj)], dim=-1)
deg_proj = torch.cat([deg_proj[:, 0], deg_proj[:, 1]], dim=-1)
# degradation mlp forward
vae_de_c_embed = self.vae_de_mlp(deg_proj)
unet_de_c_embed = self.unet_de_mlp(deg_proj)
# block embedding mlp forward
vae_block_c_embeds = self.vae_block_mlp(self.vae_block_embeddings.weight)
unet_block_c_embeds = self.unet_block_mlp(self.unet_block_embeddings.weight)
vae_embeds = self.vae_fuse_mlp(torch.cat([vae_de_c_embed.unsqueeze(1).repeat(1, vae_block_c_embeds.shape[0], 1), \
vae_block_c_embeds.unsqueeze(0).repeat(vae_de_c_embed.shape[0],1,1)], -1))
unet_embeds = self.unet_fuse_mlp(torch.cat([unet_de_c_embed.unsqueeze(1).repeat(1, unet_block_c_embeds.shape[0], 1), \
unet_block_c_embeds.unsqueeze(0).repeat(unet_de_c_embed.shape[0],1,1)], -1))
for layer_name, module in self.vae.named_modules():
if layer_name in self.vae_lora_layers:
split_name = layer_name.split(".")
if split_name[1] == 'down_blocks':
block_id = int(split_name[2])
vae_embed = vae_embeds[:, block_id]
elif split_name[1] == 'mid_block':
vae_embed = vae_embeds[:, -2]
else:
vae_embed = vae_embeds[:, -1]
module.de_mod = vae_embed.reshape(-1, self.lora_rank_vae, self.lora_rank_vae)
for layer_name, module in self.unet.named_modules():
if layer_name in self.unet_lora_layers:
split_name = layer_name.split(".")
if split_name[0] == 'down_blocks':
block_id = int(split_name[1])
unet_embed = unet_embeds[:, block_id]
elif split_name[0] == 'mid_block':
unet_embed = unet_embeds[:, 4]
elif split_name[0] == 'up_blocks':
block_id = int(split_name[1]) + 5
unet_embed = unet_embeds[:, block_id]
else:
unet_embed = unet_embeds[:, -1]
module.de_mod = unet_embed.reshape(-1, self.lora_rank_unet, self.lora_rank_unet)
encoded_control = self.vae.encode(c_t).latent_dist.sample() * self.vae.config.scaling_factor
model_pred = self.unet(encoded_control, self.timesteps, encoder_hidden_states=caption_enc,).sample
x_denoised = self.sched.step(model_pred, self.timesteps, encoded_control, return_dict=True).prev_sample
output_image = (self.vae.decode(x_denoised / self.vae.config.scaling_factor).sample).clamp(-1, 1)
return output_image
def save_model(self, outf):
sd = {}
sd["unet_lora_target_modules"] = self.target_modules_unet
sd["vae_lora_target_modules"] = self.target_modules_vae
sd["rank_unet"] = self.lora_rank_unet
sd["rank_vae"] = self.lora_rank_vae
sd["state_dict_unet"] = {k: v for k, v in self.unet.state_dict().items() if "lora" in k or "conv_in" in k}
sd["state_dict_vae"] = {k: v for k, v in self.vae.state_dict().items() if "lora" in k or "skip_conv" in k}
sd["state_dict_vae_de_mlp"] = {k: v for k, v in self.vae_de_mlp.state_dict().items()}
sd["state_dict_unet_de_mlp"] = {k: v for k, v in self.unet_de_mlp.state_dict().items()}
sd["state_dict_vae_block_mlp"] = {k: v for k, v in self.vae_block_mlp.state_dict().items()}
sd["state_dict_unet_block_mlp"] = {k: v for k, v in self.unet_block_mlp.state_dict().items()}
sd["state_dict_vae_fuse_mlp"] = {k: v for k, v in self.vae_fuse_mlp.state_dict().items()}
sd["state_dict_unet_fuse_mlp"] = {k: v for k, v in self.unet_fuse_mlp.state_dict().items()}
sd["w"] = self.W
sd["state_embeddings"] = {
"state_dict_vae_block": self.vae_block_embeddings.state_dict(),
"state_dict_unet_block": self.unet_block_embeddings.state_dict(),
}
torch.save(sd, outf)