|
import torch |
|
import copy |
|
from torch import nn as nn |
|
from basicsr.archs.arch_util import ResidualBlockNoBN, default_init_weights |
|
|
|
class DEResNet(nn.Module): |
|
"""Degradation Estimator with ResNetNoBN arch. v2.1, no vector anymore |
|
|
|
As shown in paper 'Towards Flexible Blind JPEG Artifacts Removal', |
|
resnet arch works for image quality estimation. |
|
|
|
Args: |
|
num_in_ch (int): channel number of inputs. Default: 3. |
|
num_degradation (int): num of degradation the DE should estimate. Default: 2(blur+noise). |
|
degradation_embed_size (int): embedding size of each degradation vector. |
|
degradation_degree_actv (int): activation function for degradation degree scalar. Default: sigmoid. |
|
num_feats (list): channel number of each stage. |
|
num_blocks (list): residual block of each stage. |
|
downscales (list): downscales of each stage. |
|
""" |
|
|
|
def __init__(self, |
|
num_in_ch=3, |
|
num_degradation=2, |
|
degradation_degree_actv='sigmoid', |
|
num_feats=[64, 64, 64, 128], |
|
num_blocks=[2, 2, 2, 2], |
|
downscales=[1, 1, 2, 1]): |
|
super(DEResNet, self).__init__() |
|
|
|
assert isinstance(num_feats, list) |
|
assert isinstance(num_blocks, list) |
|
assert isinstance(downscales, list) |
|
assert len(num_feats) == len(num_blocks) and len(num_feats) == len(downscales) |
|
|
|
num_stage = len(num_feats) |
|
|
|
self.conv_first = nn.ModuleList() |
|
for _ in range(num_degradation): |
|
self.conv_first.append(nn.Conv2d(num_in_ch, num_feats[0], 3, 1, 1)) |
|
self.body = nn.ModuleList() |
|
for _ in range(num_degradation): |
|
body = list() |
|
for stage in range(num_stage): |
|
for _ in range(num_blocks[stage]): |
|
body.append(ResidualBlockNoBN(num_feats[stage])) |
|
if downscales[stage] == 1: |
|
if stage < num_stage - 1 and num_feats[stage] != num_feats[stage + 1]: |
|
body.append(nn.Conv2d(num_feats[stage], num_feats[stage + 1], 3, 1, 1)) |
|
continue |
|
elif downscales[stage] == 2: |
|
body.append(nn.Conv2d(num_feats[stage], num_feats[min(stage + 1, num_stage - 1)], 3, 2, 1)) |
|
else: |
|
raise NotImplementedError |
|
self.body.append(nn.Sequential(*body)) |
|
|
|
self.num_degradation = num_degradation |
|
self.fc_degree = nn.ModuleList() |
|
if degradation_degree_actv == 'sigmoid': |
|
actv = nn.Sigmoid |
|
elif degradation_degree_actv == 'tanh': |
|
actv = nn.Tanh |
|
else: |
|
raise NotImplementedError(f'only sigmoid and tanh are supported for degradation_degree_actv, ' |
|
f'{degradation_degree_actv} is not supported yet.') |
|
for _ in range(num_degradation): |
|
self.fc_degree.append( |
|
nn.Sequential( |
|
nn.Linear(num_feats[-1], 512), |
|
nn.ReLU(inplace=True), |
|
nn.Linear(512, 1), |
|
actv(), |
|
)) |
|
|
|
self.avg_pool = nn.AdaptiveAvgPool2d(1) |
|
|
|
default_init_weights([self.conv_first, self.body, self.fc_degree], 0.1) |
|
|
|
def clone_module(self, module): |
|
new_module = copy.deepcopy(module) |
|
return new_module |
|
|
|
def average_parameters(self, modules): |
|
avg_module = self.clone_module(modules[0]) |
|
for name, param in avg_module.named_parameters(): |
|
avg_param = sum([mod.state_dict()[name].data for mod in modules]) / len(modules) |
|
param.data.copy_(avg_param) |
|
return avg_module |
|
|
|
def expand_degradation_modules(self, new_num_degradation): |
|
if new_num_degradation <= self.num_degradation: |
|
return |
|
initial_modules = [self.conv_first, self.body, self.fc_degree] |
|
|
|
for modules in initial_modules: |
|
avg_module = self.average_parameters(modules[:2]) |
|
while len(modules) < new_num_degradation: |
|
modules.append(self.clone_module(avg_module)) |
|
|
|
def load_and_expand_model(self, path, num_degradation): |
|
state_dict = torch.load(path, map_location=torch.device('cpu')) |
|
self.load_state_dict(state_dict, strict=True) |
|
|
|
self.expand_degradation_modules(num_degradation) |
|
self.num_degradation = num_degradation |
|
|
|
def load_model(self, path): |
|
state_dict = torch.load(path, map_location=torch.device('cpu')) |
|
self.load_state_dict(state_dict, strict=True) |
|
|
|
def set_train(self): |
|
self.conv_first.requires_grad_(True) |
|
self.fc_degree.requires_grad_(True) |
|
for n, _p in self.body.named_parameters(): |
|
if "lora" in n: |
|
_p.requires_grad = True |
|
|
|
def forward(self, x): |
|
degrees = [] |
|
for i in range(self.num_degradation): |
|
x_out = self.conv_first[i](x) |
|
feat = self.body[i](x_out) |
|
feat = self.avg_pool(feat) |
|
feat = feat.squeeze(-1).squeeze(-1) |
|
|
|
degrees.append(self.fc_degree[i](feat).squeeze(-1)) |
|
return torch.stack(degrees, dim=1) |