|
import cv2 |
|
import math |
|
import numpy as np |
|
import os.path as osp |
|
import torch |
|
import torch.utils.data as data |
|
import random |
|
from basicsr.data import degradations as degradations |
|
from basicsr.data.data_util import paths_from_folder |
|
from basicsr.data.transforms import augment |
|
from basicsr.utils import FileClient, get_root_logger, imfrombytes, img2tensor |
|
from basicsr.utils.registry import DATASET_REGISTRY |
|
from pathlib import Path |
|
from torchvision.transforms.functional import (adjust_brightness, adjust_contrast, adjust_hue, adjust_saturation, |
|
normalize) |
|
|
|
@DATASET_REGISTRY.register() |
|
class FFHQDegradationDataset(data.Dataset): |
|
"""FFHQ dataset for GFPGAN. |
|
It reads high resolution images, and then generate low-quality (LQ) images on-the-fly. |
|
Args: |
|
opt (dict): Config for train datasets. It contains the following keys: |
|
dataroot_gt (str): Data root path for gt. |
|
io_backend (dict): IO backend type and other kwarg. |
|
mean (list | tuple): Image mean. |
|
std (list | tuple): Image std. |
|
use_hflip (bool): Whether to horizontally flip. |
|
Please see more options in the codes. |
|
""" |
|
|
|
def __init__(self, opt): |
|
super(FFHQDegradationDataset, self).__init__() |
|
self.opt = opt |
|
|
|
self.file_client = None |
|
self.io_backend_opt = opt['io_backend'] |
|
if 'image_type' not in opt: |
|
opt['image_type'] = 'png' |
|
|
|
self.gt_folder = opt['dataroot_gt'] |
|
self.mean = opt['mean'] |
|
self.std = opt['std'] |
|
self.out_size = opt['out_size'] |
|
|
|
self.crop_components = opt.get('crop_components', False) |
|
self.eye_enlarge_ratio = opt.get('eye_enlarge_ratio', 1) |
|
|
|
if self.crop_components: |
|
|
|
self.components_list = torch.load(opt.get('component_path')) |
|
|
|
|
|
if self.io_backend_opt['type'] == 'lmdb': |
|
self.io_backend_opt['db_paths'] = self.gt_folder |
|
if not self.gt_folder.endswith('.lmdb'): |
|
raise ValueError(f"'dataroot_gt' should end with '.lmdb', but received {self.gt_folder}") |
|
with open(osp.join(self.gt_folder, 'meta_info.txt')) as fin: |
|
self.paths = [line.split('.')[0] for line in fin] |
|
else: |
|
|
|
self.paths = self.paths = sorted([str(x) for x in Path(self.gt_folder).glob('*.'+opt['image_type'])]) |
|
|
|
|
|
self.blur_kernel_size = opt['blur_kernel_size'] |
|
self.kernel_list = opt['kernel_list'] |
|
self.kernel_prob = opt['kernel_prob'] |
|
self.blur_sigma = opt['blur_sigma'] |
|
self.downsample_range = opt['downsample_range'] |
|
self.noise_range = opt['noise_range'] |
|
self.jpeg_range = opt['jpeg_range'] |
|
|
|
|
|
self.color_jitter_prob = opt.get('color_jitter_prob') |
|
self.color_jitter_pt_prob = opt.get('color_jitter_pt_prob') |
|
self.color_jitter_shift = opt.get('color_jitter_shift', 20) |
|
|
|
self.gray_prob = opt.get('gray_prob') |
|
|
|
logger = get_root_logger() |
|
logger.info(f'Blur: blur_kernel_size {self.blur_kernel_size}, sigma: [{", ".join(map(str, self.blur_sigma))}]') |
|
logger.info(f'Downsample: downsample_range [{", ".join(map(str, self.downsample_range))}]') |
|
logger.info(f'Noise: [{", ".join(map(str, self.noise_range))}]') |
|
logger.info(f'JPEG compression: [{", ".join(map(str, self.jpeg_range))}]') |
|
|
|
if self.color_jitter_prob is not None: |
|
logger.info(f'Use random color jitter. Prob: {self.color_jitter_prob}, shift: {self.color_jitter_shift}') |
|
if self.gray_prob is not None: |
|
logger.info(f'Use random gray. Prob: {self.gray_prob}') |
|
if self.color_jitter_shift is not None: |
|
self.color_jitter_shift /= 255. |
|
|
|
@staticmethod |
|
def color_jitter(img, shift): |
|
"""jitter color: randomly jitter the RGB values, in numpy formats""" |
|
jitter_val = np.random.uniform(-shift, shift, 3).astype(np.float32) |
|
img = img + jitter_val |
|
img = np.clip(img, 0, 1) |
|
return img |
|
|
|
@staticmethod |
|
def color_jitter_pt(img, brightness, contrast, saturation, hue): |
|
"""jitter color: randomly jitter the brightness, contrast, saturation, and hue, in torch Tensor formats""" |
|
fn_idx = torch.randperm(4) |
|
for fn_id in fn_idx: |
|
if fn_id == 0 and brightness is not None: |
|
brightness_factor = torch.tensor(1.0).uniform_(brightness[0], brightness[1]).item() |
|
img = adjust_brightness(img, brightness_factor) |
|
|
|
if fn_id == 1 and contrast is not None: |
|
contrast_factor = torch.tensor(1.0).uniform_(contrast[0], contrast[1]).item() |
|
img = adjust_contrast(img, contrast_factor) |
|
|
|
if fn_id == 2 and saturation is not None: |
|
saturation_factor = torch.tensor(1.0).uniform_(saturation[0], saturation[1]).item() |
|
img = adjust_saturation(img, saturation_factor) |
|
|
|
if fn_id == 3 and hue is not None: |
|
hue_factor = torch.tensor(1.0).uniform_(hue[0], hue[1]).item() |
|
img = adjust_hue(img, hue_factor) |
|
return img |
|
|
|
def get_component_coordinates(self, index, status): |
|
"""Get facial component (left_eye, right_eye, mouth) coordinates from a pre-loaded pth file""" |
|
components_bbox = self.components_list[f'{index:08d}'] |
|
if status[0]: |
|
|
|
tmp = components_bbox['left_eye'] |
|
components_bbox['left_eye'] = components_bbox['right_eye'] |
|
components_bbox['right_eye'] = tmp |
|
|
|
components_bbox['left_eye'][0] = self.out_size - components_bbox['left_eye'][0] |
|
components_bbox['right_eye'][0] = self.out_size - components_bbox['right_eye'][0] |
|
components_bbox['mouth'][0] = self.out_size - components_bbox['mouth'][0] |
|
|
|
|
|
locations = [] |
|
for part in ['left_eye', 'right_eye', 'mouth']: |
|
mean = components_bbox[part][0:2] |
|
half_len = components_bbox[part][2] |
|
if 'eye' in part: |
|
half_len *= self.eye_enlarge_ratio |
|
loc = np.hstack((mean - half_len + 1, mean + half_len)) |
|
loc = torch.from_numpy(loc).float() |
|
locations.append(loc) |
|
return locations |
|
|
|
def __getitem__(self, index): |
|
if self.file_client is None: |
|
self.file_client = FileClient(self.io_backend_opt.pop('type'), **self.io_backend_opt) |
|
|
|
|
|
|
|
gt_path = self.paths[index] |
|
img_bytes = self.file_client.get(gt_path) |
|
img_gt = imfrombytes(img_bytes, float32=True) |
|
|
|
|
|
img_gt, status = augment(img_gt, hflip=self.opt['use_hflip'], rotation=False, return_status=True) |
|
h, w, _ = img_gt.shape |
|
|
|
|
|
if self.crop_components: |
|
locations = self.get_component_coordinates(index, status) |
|
loc_left_eye, loc_right_eye, loc_mouth = locations |
|
|
|
|
|
|
|
kernel = degradations.random_mixed_kernels( |
|
self.kernel_list, |
|
self.kernel_prob, |
|
self.blur_kernel_size, |
|
self.blur_sigma, |
|
self.blur_sigma, [-math.pi, math.pi], |
|
noise_range=None) |
|
img_lq = cv2.filter2D(img_gt, -1, kernel) |
|
|
|
scale = np.random.uniform(self.downsample_range[0], self.downsample_range[1]) |
|
img_lq = cv2.resize(img_lq, (int(w // scale), int(h // scale)), interpolation=cv2.INTER_LINEAR) |
|
|
|
if self.noise_range is not None: |
|
img_lq = degradations.random_add_gaussian_noise(img_lq, self.noise_range) |
|
|
|
if self.jpeg_range is not None: |
|
img_lq = degradations.random_add_jpg_compression(img_lq, self.jpeg_range) |
|
|
|
|
|
img_lq = cv2.resize(img_lq, (w, h), interpolation=cv2.INTER_LINEAR) |
|
|
|
|
|
if self.color_jitter_prob is not None and (np.random.uniform() < self.color_jitter_prob): |
|
img_lq = self.color_jitter(img_lq, self.color_jitter_shift) |
|
|
|
if self.gray_prob and np.random.uniform() < self.gray_prob: |
|
img_lq = cv2.cvtColor(img_lq, cv2.COLOR_BGR2GRAY) |
|
img_lq = np.tile(img_lq[:, :, None], [1, 1, 3]) |
|
if self.opt.get('gt_gray'): |
|
img_gt = cv2.cvtColor(img_gt, cv2.COLOR_BGR2GRAY) |
|
img_gt = np.tile(img_gt[:, :, None], [1, 1, 3]) |
|
|
|
|
|
img_gt, img_lq = img2tensor([img_gt, img_lq], bgr2rgb=True, float32=True) |
|
|
|
|
|
if self.color_jitter_pt_prob is not None and (np.random.uniform() < self.color_jitter_pt_prob): |
|
brightness = self.opt.get('brightness', (0.5, 1.5)) |
|
contrast = self.opt.get('contrast', (0.5, 1.5)) |
|
saturation = self.opt.get('saturation', (0, 1.5)) |
|
hue = self.opt.get('hue', (-0.1, 0.1)) |
|
img_lq = self.color_jitter_pt(img_lq, brightness, contrast, saturation, hue) |
|
|
|
|
|
img_lq = torch.clamp((img_lq * 255.0).round(), 0, 255) / 255. |
|
|
|
|
|
normalize(img_gt, self.mean, self.std, inplace=True) |
|
normalize(img_lq, self.mean, self.std, inplace=True) |
|
|
|
if self.crop_components: |
|
return_dict = { |
|
'lq': img_lq, |
|
'gt': img_gt, |
|
'gt_path': gt_path, |
|
'loc_left_eye': loc_left_eye, |
|
'loc_right_eye': loc_right_eye, |
|
'loc_mouth': loc_mouth |
|
} |
|
return return_dict |
|
else: |
|
return {'lq': img_lq, 'gt': img_gt, 'gt_path': gt_path} |
|
|
|
def __len__(self): |
|
return len(self.paths) |
|
|