|
import cv2 |
|
import random |
|
import torch |
|
|
|
|
|
def mod_crop(img, scale): |
|
"""Mod crop images, used during testing. |
|
|
|
Args: |
|
img (ndarray): Input image. |
|
scale (int): Scale factor. |
|
|
|
Returns: |
|
ndarray: Result image. |
|
""" |
|
img = img.copy() |
|
if img.ndim in (2, 3): |
|
h, w = img.shape[0], img.shape[1] |
|
h_remainder, w_remainder = h % scale, w % scale |
|
img = img[:h - h_remainder, :w - w_remainder, ...] |
|
else: |
|
raise ValueError(f'Wrong img ndim: {img.ndim}.') |
|
return img |
|
|
|
|
|
def paired_random_crop(img_gts, img_lqs, gt_patch_size, scale, gt_path=None): |
|
"""Paired random crop. Support Numpy array and Tensor inputs. |
|
|
|
It crops lists of lq and gt images with corresponding locations. |
|
|
|
Args: |
|
img_gts (list[ndarray] | ndarray | list[Tensor] | Tensor): GT images. Note that all images |
|
should have the same shape. If the input is an ndarray, it will |
|
be transformed to a list containing itself. |
|
img_lqs (list[ndarray] | ndarray): LQ images. Note that all images |
|
should have the same shape. If the input is an ndarray, it will |
|
be transformed to a list containing itself. |
|
gt_patch_size (int): GT patch size. |
|
scale (int): Scale factor. |
|
gt_path (str): Path to ground-truth. Default: None. |
|
|
|
Returns: |
|
list[ndarray] | ndarray: GT images and LQ images. If returned results |
|
only have one element, just return ndarray. |
|
""" |
|
|
|
if not isinstance(img_gts, list): |
|
img_gts = [img_gts] |
|
if not isinstance(img_lqs, list): |
|
img_lqs = [img_lqs] |
|
|
|
|
|
input_type = 'Tensor' if torch.is_tensor(img_gts[0]) else 'Numpy' |
|
|
|
if input_type == 'Tensor': |
|
h_lq, w_lq = img_lqs[0].size()[-2:] |
|
h_gt, w_gt = img_gts[0].size()[-2:] |
|
else: |
|
h_lq, w_lq = img_lqs[0].shape[0:2] |
|
h_gt, w_gt = img_gts[0].shape[0:2] |
|
lq_patch_size = gt_patch_size // scale |
|
|
|
if h_gt != h_lq * scale or w_gt != w_lq * scale: |
|
raise ValueError(f'Scale mismatches. GT ({h_gt}, {w_gt}) is not {scale}x ', |
|
f'multiplication of LQ ({h_lq}, {w_lq}).') |
|
if h_lq < lq_patch_size or w_lq < lq_patch_size: |
|
raise ValueError(f'LQ ({h_lq}, {w_lq}) is smaller than patch size ' |
|
f'({lq_patch_size}, {lq_patch_size}). ' |
|
f'Please remove {gt_path}.') |
|
|
|
|
|
top = random.randint(0, h_lq - lq_patch_size) |
|
left = random.randint(0, w_lq - lq_patch_size) |
|
|
|
|
|
if input_type == 'Tensor': |
|
img_lqs = [v[:, :, top:top + lq_patch_size, left:left + lq_patch_size] for v in img_lqs] |
|
else: |
|
img_lqs = [v[top:top + lq_patch_size, left:left + lq_patch_size, ...] for v in img_lqs] |
|
|
|
|
|
top_gt, left_gt = int(top * scale), int(left * scale) |
|
if input_type == 'Tensor': |
|
img_gts = [v[:, :, top_gt:top_gt + gt_patch_size, left_gt:left_gt + gt_patch_size] for v in img_gts] |
|
else: |
|
img_gts = [v[top_gt:top_gt + gt_patch_size, left_gt:left_gt + gt_patch_size, ...] for v in img_gts] |
|
if len(img_gts) == 1: |
|
img_gts = img_gts[0] |
|
if len(img_lqs) == 1: |
|
img_lqs = img_lqs[0] |
|
return img_gts, img_lqs |
|
|
|
def triplet_random_crop(img_gts, img_lqs, img_segs, gt_patch_size, scale, gt_path=None): |
|
|
|
if not isinstance(img_gts, list): |
|
img_gts = [img_gts] |
|
if not isinstance(img_lqs, list): |
|
img_lqs = [img_lqs] |
|
if not isinstance(img_segs, list): |
|
img_segs = [img_segs] |
|
|
|
|
|
input_type = 'Tensor' if torch.is_tensor(img_gts[0]) else 'Numpy' |
|
|
|
if input_type == 'Tensor': |
|
h_lq, w_lq = img_lqs[0].size()[-2:] |
|
h_gt, w_gt = img_gts[0].size()[-2:] |
|
h_seg, w_seg = img_segs[0].size()[-2:] |
|
else: |
|
h_lq, w_lq = img_lqs[0].shape[0:2] |
|
h_gt, w_gt = img_gts[0].shape[0:2] |
|
h_seg, w_seg = img_segs[0].shape[0:2] |
|
lq_patch_size = gt_patch_size // scale |
|
|
|
if h_gt != h_lq * scale or w_gt != w_lq * scale: |
|
raise ValueError(f'Scale mismatches. GT ({h_gt}, {w_gt}) is not {scale}x ', |
|
f'multiplication of LQ ({h_lq}, {w_lq}).') |
|
if h_lq < lq_patch_size or w_lq < lq_patch_size: |
|
raise ValueError(f'LQ ({h_lq}, {w_lq}) is smaller than patch size ' |
|
f'({lq_patch_size}, {lq_patch_size}). ' |
|
f'Please remove {gt_path}.') |
|
|
|
|
|
top = random.randint(0, h_lq - lq_patch_size) |
|
left = random.randint(0, w_lq - lq_patch_size) |
|
|
|
|
|
if input_type == 'Tensor': |
|
img_lqs = [v[:, :, top:top + lq_patch_size, left:left + lq_patch_size] for v in img_lqs] |
|
else: |
|
img_lqs = [v[top:top + lq_patch_size, left:left + lq_patch_size, ...] for v in img_lqs] |
|
|
|
|
|
top_gt, left_gt = int(top * scale), int(left * scale) |
|
if input_type == 'Tensor': |
|
img_gts = [v[:, :, top_gt:top_gt + gt_patch_size, left_gt:left_gt + gt_patch_size] for v in img_gts] |
|
else: |
|
img_gts = [v[top_gt:top_gt + gt_patch_size, left_gt:left_gt + gt_patch_size, ...] for v in img_gts] |
|
|
|
if input_type == 'Tensor': |
|
img_segs = [v[:, :, top_gt:top_gt + gt_patch_size, left_gt:left_gt + gt_patch_size] for v in img_segs] |
|
else: |
|
img_segs = [v[top_gt:top_gt + gt_patch_size, left_gt:left_gt + gt_patch_size, ...] for v in img_segs] |
|
|
|
if len(img_gts) == 1: |
|
img_gts = img_gts[0] |
|
if len(img_lqs) == 1: |
|
img_lqs = img_lqs[0] |
|
if len(img_segs) == 1: |
|
img_segs = img_segs[0] |
|
|
|
return img_gts, img_lqs, img_segs |
|
|
|
|
|
def augment(imgs, hflip=True, rotation=True, flows=None, return_status=False): |
|
"""Augment: horizontal flips OR rotate (0, 90, 180, 270 degrees). |
|
|
|
We use vertical flip and transpose for rotation implementation. |
|
All the images in the list use the same augmentation. |
|
|
|
Args: |
|
imgs (list[ndarray] | ndarray): Images to be augmented. If the input |
|
is an ndarray, it will be transformed to a list. |
|
hflip (bool): Horizontal flip. Default: True. |
|
rotation (bool): Ratotation. Default: True. |
|
flows (list[ndarray]: Flows to be augmented. If the input is an |
|
ndarray, it will be transformed to a list. |
|
Dimension is (h, w, 2). Default: None. |
|
return_status (bool): Return the status of flip and rotation. |
|
Default: False. |
|
|
|
Returns: |
|
list[ndarray] | ndarray: Augmented images and flows. If returned |
|
results only have one element, just return ndarray. |
|
|
|
""" |
|
hflip = hflip and random.random() < 0.5 |
|
vflip = rotation and random.random() < 0.5 |
|
rot90 = rotation and random.random() < 0.5 |
|
|
|
def _augment(img): |
|
if hflip: |
|
cv2.flip(img, 1, img) |
|
if vflip: |
|
cv2.flip(img, 0, img) |
|
if rot90: |
|
img = img.transpose(1, 0, 2) |
|
return img |
|
|
|
def _augment_flow(flow): |
|
if hflip: |
|
cv2.flip(flow, 1, flow) |
|
flow[:, :, 0] *= -1 |
|
if vflip: |
|
cv2.flip(flow, 0, flow) |
|
flow[:, :, 1] *= -1 |
|
if rot90: |
|
flow = flow.transpose(1, 0, 2) |
|
flow = flow[:, :, [1, 0]] |
|
return flow |
|
|
|
if not isinstance(imgs, list): |
|
imgs = [imgs] |
|
imgs = [_augment(img) for img in imgs] |
|
if len(imgs) == 1: |
|
imgs = imgs[0] |
|
|
|
if flows is not None: |
|
if not isinstance(flows, list): |
|
flows = [flows] |
|
flows = [_augment_flow(flow) for flow in flows] |
|
if len(flows) == 1: |
|
flows = flows[0] |
|
return imgs, flows |
|
else: |
|
if return_status: |
|
return imgs, (hflip, vflip, rot90) |
|
else: |
|
return imgs |
|
|
|
|
|
def img_rotate(img, angle, center=None, scale=1.0): |
|
"""Rotate image. |
|
|
|
Args: |
|
img (ndarray): Image to be rotated. |
|
angle (float): Rotation angle in degrees. Positive values mean |
|
counter-clockwise rotation. |
|
center (tuple[int]): Rotation center. If the center is None, |
|
initialize it as the center of the image. Default: None. |
|
scale (float): Isotropic scale factor. Default: 1.0. |
|
""" |
|
(h, w) = img.shape[:2] |
|
|
|
if center is None: |
|
center = (w // 2, h // 2) |
|
|
|
matrix = cv2.getRotationMatrix2D(center, angle, scale) |
|
rotated_img = cv2.warpAffine(img, matrix, (w, h)) |
|
return rotated_img |
|
|