Spaces:
Sleeping
Sleeping
zeyadahmedd
commited on
Commit
•
1f6f7c0
1
Parent(s):
2022372
Update app.py
Browse files
app.py
CHANGED
@@ -1,39 +1,39 @@
|
|
1 |
import gradio as gr
|
2 |
-
from sentence_transformers import SentenceTransformer, util
|
3 |
-
|
4 |
-
model_name = 'nq-distilbert-base-v1'
|
5 |
-
bi_encoder = SentenceTransformer("./")
|
6 |
-
top_k = 5
|
7 |
-
sentences = [
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
]
|
12 |
-
# vector embeddings created from dataset
|
13 |
-
corpus_embeddings = bi_encoder.encode(sentences, convert_to_tensor=True, show_progress_bar=True)
|
14 |
-
|
15 |
-
def search(query):
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
def greet(name):
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
import dill
|
38 |
def greet1(data):
|
39 |
# pdf=data.get('pdf')
|
@@ -49,8 +49,8 @@ iface = gr.Blocks()
|
|
49 |
with iface:
|
50 |
name = gr.Textbox(label="Name")
|
51 |
output = gr.Textbox(label="Output Box")
|
52 |
-
greet_btn = gr.Button("Greet")
|
53 |
-
greet_btn.click(fn=greet, inputs=name, outputs=output, api_name="greet")
|
54 |
greet1_btn = gr.Button("Greet1")
|
55 |
greet1_btn.click(fn=greet1, inputs=name, outputs=output, api_name="testing")
|
56 |
|
|
|
1 |
import gradio as gr
|
2 |
+
# from sentence_transformers import SentenceTransformer, util
|
3 |
+
#
|
4 |
+
# model_name = 'nq-distilbert-base-v1'
|
5 |
+
# bi_encoder = SentenceTransformer("./")
|
6 |
+
# top_k = 5
|
7 |
+
# sentences = [
|
8 |
+
# "a happy person is a person how can do what he want with his money",
|
9 |
+
# "That is a happy dog ho bark alot",
|
10 |
+
# "Today is a sunny day so that a happy person can walk on the street"
|
11 |
+
# ]
|
12 |
+
# # vector embeddings created from dataset
|
13 |
+
# corpus_embeddings = bi_encoder.encode(sentences, convert_to_tensor=True, show_progress_bar=True)
|
14 |
+
#
|
15 |
+
# def search(query):
|
16 |
+
# # Encode the query using the bi-encoder and find potentially relevant passages
|
17 |
+
# question_embedding = bi_encoder.encode(query)
|
18 |
+
# hits = util.semantic_search(question_embedding, corpus_embeddings, top_k=top_k)
|
19 |
+
# hits = hits[0] # Get the hits for the first query
|
20 |
+
#
|
21 |
+
# # Output of top-k hits
|
22 |
+
# print("Input question:", query)
|
23 |
+
# print("Results")
|
24 |
+
# for hit in hits:
|
25 |
+
# print("\t{:.3f}\t{}".format(hit['score'], sentences[hit['corpus_id']]))
|
26 |
+
# return hits
|
27 |
+
#
|
28 |
+
# def greet(name):
|
29 |
+
# hittt = search(query=name)
|
30 |
+
# x=dict()
|
31 |
+
# for hit in hittt:
|
32 |
+
# score=hit['score']
|
33 |
+
# sentence=sentences[hit['corpus_id']]
|
34 |
+
# buffer={sentence:score}
|
35 |
+
# x.update(buffer)
|
36 |
+
# return x
|
37 |
import dill
|
38 |
def greet1(data):
|
39 |
# pdf=data.get('pdf')
|
|
|
49 |
with iface:
|
50 |
name = gr.Textbox(label="Name")
|
51 |
output = gr.Textbox(label="Output Box")
|
52 |
+
# greet_btn = gr.Button("Greet")
|
53 |
+
# greet_btn.click(fn=greet, inputs=name, outputs=output, api_name="greet")
|
54 |
greet1_btn = gr.Button("Greet1")
|
55 |
greet1_btn.click(fn=greet1, inputs=name, outputs=output, api_name="testing")
|
56 |
|