Spaces:
Runtime error
Runtime error
zetavg
commited on
improve speed of switching models by offloading unused ones to cpu ram instead if unloading
Browse files- llama_lora/globals.py +17 -1
- llama_lora/ui/main_page.py +0 -1
- llama_lora/utils/model_lru_cache.py +68 -0
llama_lora/globals.py
CHANGED
@@ -1,5 +1,7 @@
|
|
1 |
import os
|
2 |
import subprocess
|
|
|
|
|
3 |
|
4 |
from typing import Any, Dict, List, Optional, Tuple, Union
|
5 |
|
@@ -7,6 +9,7 @@ from numba import cuda
|
|
7 |
import nvidia_smi
|
8 |
|
9 |
from .utils.lru_cache import LRUCache
|
|
|
10 |
from .lib.finetune import train
|
11 |
|
12 |
|
@@ -34,7 +37,7 @@ class Global:
|
|
34 |
generation_force_stopped_at = None
|
35 |
|
36 |
# Model related
|
37 |
-
loaded_models =
|
38 |
loaded_tokenizers = LRUCache(1)
|
39 |
new_base_model_that_is_ready_to_be_used = None
|
40 |
name_of_new_base_model_that_is_ready_to_be_used = None
|
@@ -89,6 +92,7 @@ if commit_hash:
|
|
89 |
|
90 |
|
91 |
def load_gpu_info():
|
|
|
92 |
try:
|
93 |
cc_cores_per_SM_dict = {
|
94 |
(2, 0): 32,
|
@@ -135,8 +139,20 @@ def load_gpu_info():
|
|
135 |
f"GPU total memory: {total_memory} bytes ({total_memory_mb:.2f} MB) ({total_memory_gb:.2f} GB)")
|
136 |
Global.gpu_total_memory = total_memory
|
137 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
138 |
except Exception as e:
|
139 |
print(f"Notice: cannot get GPU info: {e}")
|
140 |
|
|
|
141 |
|
142 |
load_gpu_info()
|
|
|
1 |
import os
|
2 |
import subprocess
|
3 |
+
import psutil
|
4 |
+
import math
|
5 |
|
6 |
from typing import Any, Dict, List, Optional, Tuple, Union
|
7 |
|
|
|
9 |
import nvidia_smi
|
10 |
|
11 |
from .utils.lru_cache import LRUCache
|
12 |
+
from .utils.model_lru_cache import ModelLRUCache
|
13 |
from .lib.finetune import train
|
14 |
|
15 |
|
|
|
37 |
generation_force_stopped_at = None
|
38 |
|
39 |
# Model related
|
40 |
+
loaded_models = ModelLRUCache(1)
|
41 |
loaded_tokenizers = LRUCache(1)
|
42 |
new_base_model_that_is_ready_to_be_used = None
|
43 |
name_of_new_base_model_that_is_ready_to_be_used = None
|
|
|
92 |
|
93 |
|
94 |
def load_gpu_info():
|
95 |
+
print("")
|
96 |
try:
|
97 |
cc_cores_per_SM_dict = {
|
98 |
(2, 0): 32,
|
|
|
139 |
f"GPU total memory: {total_memory} bytes ({total_memory_mb:.2f} MB) ({total_memory_gb:.2f} GB)")
|
140 |
Global.gpu_total_memory = total_memory
|
141 |
|
142 |
+
available_cpu_ram = psutil.virtual_memory().available
|
143 |
+
available_cpu_ram_mb = available_cpu_ram / (1024 ** 2)
|
144 |
+
available_cpu_ram_gb = available_cpu_ram / (1024 ** 3)
|
145 |
+
print(
|
146 |
+
f"CPU available memory: {available_cpu_ram} bytes ({available_cpu_ram_mb:.2f} MB) ({available_cpu_ram_gb:.2f} GB)")
|
147 |
+
preserve_loaded_models_count = math.floor((available_cpu_ram * 0.8) / total_memory) - 1
|
148 |
+
if preserve_loaded_models_count > 1:
|
149 |
+
print(f"Will keep {preserve_loaded_models_count} offloaded models in CPU RAM.")
|
150 |
+
Global.loaded_models = ModelLRUCache(preserve_loaded_models_count)
|
151 |
+
Global.loaded_tokenizers = LRUCache(preserve_loaded_models_count)
|
152 |
+
|
153 |
except Exception as e:
|
154 |
print(f"Notice: cannot get GPU info: {e}")
|
155 |
|
156 |
+
print("")
|
157 |
|
158 |
load_gpu_info()
|
llama_lora/ui/main_page.py
CHANGED
@@ -136,7 +136,6 @@ def main_page():
|
|
136 |
const tokenizer_name = current_tokenizer_hint_elem && current_tokenizer_hint_elem.innerText;
|
137 |
|
138 |
if (tokenizer_name && tokenizer_name !== base_model_name) {
|
139 |
-
document.querySelector('#global_tokenizer_select input').value = tokenizer_name;
|
140 |
const btn = document.getElementById('use_custom_tokenizer_btn');
|
141 |
if (btn) btn.click();
|
142 |
}
|
|
|
136 |
const tokenizer_name = current_tokenizer_hint_elem && current_tokenizer_hint_elem.innerText;
|
137 |
|
138 |
if (tokenizer_name && tokenizer_name !== base_model_name) {
|
|
|
139 |
const btn = document.getElementById('use_custom_tokenizer_btn');
|
140 |
if (btn) btn.click();
|
141 |
}
|
llama_lora/utils/model_lru_cache.py
ADDED
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from collections import OrderedDict
|
2 |
+
import gc
|
3 |
+
import torch
|
4 |
+
from ..lib.get_device import get_device
|
5 |
+
|
6 |
+
device_type = get_device()
|
7 |
+
|
8 |
+
|
9 |
+
class ModelLRUCache:
|
10 |
+
def __init__(self, capacity=5):
|
11 |
+
self.cache = OrderedDict()
|
12 |
+
self.capacity = capacity
|
13 |
+
|
14 |
+
def get(self, key):
|
15 |
+
if key in self.cache:
|
16 |
+
# Move the accessed item to the end of the OrderedDict
|
17 |
+
self.cache.move_to_end(key)
|
18 |
+
|
19 |
+
models_did_move = False
|
20 |
+
for k, m in self.cache.items():
|
21 |
+
if key != k and m.device.type != 'cpu':
|
22 |
+
models_did_move = True
|
23 |
+
self.cache[k] = m.to('cpu')
|
24 |
+
|
25 |
+
if models_did_move:
|
26 |
+
gc.collect()
|
27 |
+
# if not shared.args.cpu: # will not be running on CPUs anyway
|
28 |
+
with torch.no_grad():
|
29 |
+
torch.cuda.empty_cache()
|
30 |
+
|
31 |
+
model = self.cache[key]
|
32 |
+
|
33 |
+
if (model.device.type != device_type or
|
34 |
+
hasattr(model, "model") and
|
35 |
+
model.model.device.type != device_type):
|
36 |
+
model = model.to(device_type)
|
37 |
+
|
38 |
+
return model
|
39 |
+
return None
|
40 |
+
|
41 |
+
def set(self, key, value):
|
42 |
+
if key in self.cache:
|
43 |
+
# If the key already exists, update its value
|
44 |
+
self.cache[key] = value
|
45 |
+
else:
|
46 |
+
# If the cache has reached its capacity, remove the least recently used item
|
47 |
+
if len(self.cache) >= self.capacity:
|
48 |
+
self.cache.popitem(last=False)
|
49 |
+
self.cache[key] = value
|
50 |
+
|
51 |
+
def clear(self):
|
52 |
+
self.cache.clear()
|
53 |
+
|
54 |
+
def prepare_to_set(self):
|
55 |
+
if len(self.cache) >= self.capacity:
|
56 |
+
self.cache.popitem(last=False)
|
57 |
+
|
58 |
+
models_did_move = False
|
59 |
+
for k, m in self.cache.items():
|
60 |
+
if m.device.type != 'cpu':
|
61 |
+
models_did_move = True
|
62 |
+
self.cache[k] = m.to('cpu')
|
63 |
+
|
64 |
+
if models_did_move:
|
65 |
+
gc.collect()
|
66 |
+
# if not shared.args.cpu: # will not be running on CPUs anyway
|
67 |
+
with torch.no_grad():
|
68 |
+
torch.cuda.empty_cache()
|