zerovic commited on
Commit
6e5d885
·
verified ·
1 Parent(s): e640b4e

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +17 -43
app.py CHANGED
@@ -4,26 +4,19 @@ import torch
4
  from PIL import Image
5
  from transformers import AutoProcessor, AutoModelForCausalLM
6
 
 
 
7
  subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
8
 
9
  device = "cuda" if torch.cuda.is_available() else "cpu"
10
  florence_model = AutoModelForCausalLM.from_pretrained('microsoft/Florence-2-base', trust_remote_code=True).to(device).eval()
11
  florence_processor = AutoProcessor.from_pretrained('microsoft/Florence-2-base', trust_remote_code=True)
12
 
13
- # Modify the generate_caption function to accept a user_prompt
14
- def generate_caption(image, user_prompt_text=""):
15
  if not isinstance(image, Image.Image):
16
  image = Image.fromarray(image)
17
 
18
- # Florence-2 uses specific task prompts.
19
- # Combining a user prompt directly might not work as expected for its internal tasks.
20
- # However, we can try to append it or use it to filter/refine the output later.
21
-
22
- # For Florence-2's internal mechanism, we still use its task prompt.
23
- # The user_prompt_text will be used *after* Florence-2 generates its raw description.
24
- florence_task_prompt = "<MORE_DETAILED_CAPTION>"
25
-
26
- inputs = florence_processor(text=florence_task_prompt, images=image, return_tensors="pt").to(device)
27
  generated_ids = florence_model.generate(
28
  input_ids=inputs["input_ids"],
29
  pixel_values=inputs["pixel_values"],
@@ -33,39 +26,20 @@ def generate_caption(image, user_prompt_text=""):
33
  num_beams=3,
34
  )
35
  generated_text = florence_processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
36
- raw_caption = florence_processor.post_process_generation(
37
  generated_text,
38
- task=florence_task_prompt,
39
  image_size=(image.width, image.height)
40
- )[florence_task_prompt]
41
-
42
- print(f"\n\nRaw Florence-2 Generation: {raw_caption}")
43
-
44
- # --- POST-PROCESSING STEP ---
45
- # Now, we use a separate LLM (like the one I'm operating as) to refine the raw_caption
46
- # based on the user_prompt_text. This is crucial because Florence-2 itself
47
- # isn't designed for arbitrary stylistic prompting like "focus on clothes, age, footwear".
48
-
49
- # In a real deployed app, you'd integrate another API call here (e.g., to OpenAI, Gemini, etc.)
50
- # For this example, I'll simulate it by returning both.
51
-
52
- # You would replace this with an actual call to another LLM to refine 'raw_caption'
53
- # using 'user_prompt_text' as a guide.
54
- refined_prompt_output = f"Original Caption: {raw_caption}\n\nRefinement Request: {user_prompt_text}\n\n(Note: A secondary AI would process this for your desired output.)"
55
 
56
- return raw_caption, refined_prompt_output # Return both for demonstration
57
-
58
- io = gr.Interface(
59
- generate_caption,
60
- inputs=[
61
- gr.Image(label="Input Image"),
62
- gr.Textbox(label="Refinement Prompt (e.g., 'focus on clothes, age, hair color, footwear')", lines=2, placeholder="Optional: Describe specific focus areas for refinement.") # New text input
63
- ],
64
- outputs=[
65
- gr.Textbox(label="Raw Florence-2 Caption", lines=3, show_copy_button=True),
66
- gr.Textbox(label="Refined Output (Requires Secondary AI)", lines=5, show_copy_button=True) # Output for the refined prompt
67
- ],
68
- theme="Yntec/HaleyCH_Theme_Orange",
69
- description="⚠ Sorry for the inconvenience. The space are currently running on the CPU, which might affect performance. We appreciate your understanding."
70
- )
71
  io.launch(debug=True)
 
4
  from PIL import Image
5
  from transformers import AutoProcessor, AutoModelForCausalLM
6
 
7
+
8
+
9
  subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
10
 
11
  device = "cuda" if torch.cuda.is_available() else "cpu"
12
  florence_model = AutoModelForCausalLM.from_pretrained('microsoft/Florence-2-base', trust_remote_code=True).to(device).eval()
13
  florence_processor = AutoProcessor.from_pretrained('microsoft/Florence-2-base', trust_remote_code=True)
14
 
15
+ def generate_caption(image):
 
16
  if not isinstance(image, Image.Image):
17
  image = Image.fromarray(image)
18
 
19
+ inputs = florence_processor(text="<MORE_DETAILED_CAPTION>", images=image, return_tensors="pt").to(device)
 
 
 
 
 
 
 
 
20
  generated_ids = florence_model.generate(
21
  input_ids=inputs["input_ids"],
22
  pixel_values=inputs["pixel_values"],
 
26
  num_beams=3,
27
  )
28
  generated_text = florence_processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
29
+ parsed_answer = florence_processor.post_process_generation(
30
  generated_text,
31
+ task="<MORE_DETAILED_CAPTION>",
32
  image_size=(image.width, image.height)
33
+ )
34
+ prompt = parsed_answer["<MORE_DETAILED_CAPTION>"]
35
+ print("\n\nGeneration completed!:"+ prompt)
36
+ return prompt
 
 
 
 
 
 
 
 
 
 
 
37
 
38
+ io = gr.Interface(generate_caption,
39
+ inputs=[gr.Image(label="Input Image")],
40
+ outputs = [gr.Textbox(label="Output Prompt", lines=3, show_copy_button = True),
41
+ ],
42
+ theme="Yntec/HaleyCH_Theme_Orange",
43
+ description=" Sorry for the inconvenience. The space are currently running on the CPU, which might affect performance. We appreciate your understanding."
44
+ )
 
 
 
 
 
 
 
 
45
  io.launch(debug=True)