Spaces:
Running
on
Zero
Running
on
Zero
| # PyTorch 2.8 (temporary hack) | |
| import os | |
| os.system('pip install --upgrade --pre --extra-index-url https://download.pytorch.org/whl/nightly/cu126 "torch<2.9" spaces') | |
| # Actual demo code | |
| import spaces | |
| import torch | |
| from diffusers.pipelines.wan.pipeline_wan_i2v import WanImageToVideoPipeline | |
| from diffusers.models.transformers.transformer_wan import WanTransformer3DModel | |
| from diffusers.utils.export_utils import export_to_video | |
| import gradio as gr | |
| import tempfile | |
| import numpy as np | |
| from PIL import Image | |
| import random | |
| from optimization import optimize_pipeline_ | |
| MODEL_ID = "Wan-AI/Wan2.2-I2V-A14B-Diffusers" | |
| LANDSCAPE_WIDTH = 832 | |
| LANDSCAPE_HEIGHT = 480 | |
| MAX_SEED = np.iinfo(np.int32).max | |
| FIXED_FPS = 16 | |
| MIN_FRAMES_MODEL = 8 | |
| MAX_FRAMES_MODEL = 81 | |
| MIN_DURATION = round(MIN_FRAMES_MODEL/FIXED_FPS,1) | |
| MAX_DURATION = round(MAX_FRAMES_MODEL/FIXED_FPS,1) | |
| pipe = WanImageToVideoPipeline.from_pretrained(MODEL_ID, | |
| transformer=WanTransformer3DModel.from_pretrained('cbensimon/Wan2.2-I2V-A14B-bf16-Diffusers', | |
| subfolder='transformer', | |
| torch_dtype=torch.bfloat16, | |
| device_map='cuda', | |
| ), | |
| transformer_2=WanTransformer3DModel.from_pretrained('cbensimon/Wan2.2-I2V-A14B-bf16-Diffusers', | |
| subfolder='transformer_2', | |
| torch_dtype=torch.bfloat16, | |
| device_map='cuda', | |
| ), | |
| torch_dtype=torch.bfloat16, | |
| ).to('cuda') | |
| # load, fuse, unload before compilation | |
| # pipe.load_lora_weights( | |
| # "vrgamedevgirl84/Wan14BT2VFusioniX", | |
| # weight_name="FusionX_LoRa/Phantom_Wan_14B_FusionX_LoRA.safetensors", | |
| # adapter_name="phantom" | |
| # ) | |
| # pipe.set_adapters(["phantom"], adapter_weights=[0.95]) | |
| # pipe.fuse_lora(adapter_names=["phantom"], lora_scale=1.0) | |
| # pipe.unload_lora_weights() | |
| pipe.load_lora_weights( | |
| "vrgamedevgirl84/Wan14BT2VFusioniX", | |
| weight_name="FusionX_LoRa/Phantom_Wan_14B_FusionX_LoRA.safetensors", | |
| adapter_name="phantom" | |
| ) | |
| kwargs = {} | |
| kwargs["load_into_transformer_2"] = True | |
| # pipe.load_lora_weights( | |
| # "vrgamedevgirl84/Wan14BT2VFusioniX", | |
| # weight_name="FusionX_LoRa/Phantom_Wan_14B_FusionX_LoRA.safetensors", | |
| # adapter_name="phantom_2", **kwargs | |
| # ) | |
| # pipe.set_adapters(["phantom", "phantom_2"], adapter_weights=[1., 1.]) | |
| pipe.fuse_lora(adapter_names=["phantom"], lora_scale=3., components=["transformer"]) | |
| # pipe.fuse_lora(adapter_names=["phantom_2"], lora_scale=1., components=["transformer_2"]) | |
| pipe.unload_lora_weights() | |
| optimize_pipeline_(pipe, | |
| image=Image.new('RGB', (LANDSCAPE_WIDTH, LANDSCAPE_HEIGHT)), | |
| prompt='prompt', | |
| height=LANDSCAPE_HEIGHT, | |
| width=LANDSCAPE_WIDTH, | |
| num_frames=MAX_FRAMES_MODEL, | |
| ) | |
| default_prompt_i2v = "make this image come alive, cinematic motion, smooth animation" | |
| default_negative_prompt = "色调艳丽, 过曝, 静态, 细节模糊不清, 字幕, 风格, 作品, 画作, 画面, 静止, 整体发灰, 最差质量, 低质量, JPEG压缩残留, 丑陋的, 残缺的, 多余的手指, 画得不好的手部, 画得不好的脸部, 畸形的, 毁容的, 形态畸形的肢体, 手指融合, 静止不动的画面, 杂乱的背景, 三条腿, 背景人很多, 倒着走" | |
| def resize_image(image: Image.Image) -> Image.Image: | |
| if image.height > image.width: | |
| transposed = image.transpose(Image.Transpose.ROTATE_90) | |
| resized = resize_image_landscape(transposed) | |
| return resized.transpose(Image.Transpose.ROTATE_270) | |
| return resize_image_landscape(image) | |
| def resize_image_landscape(image: Image.Image) -> Image.Image: | |
| target_aspect = LANDSCAPE_WIDTH / LANDSCAPE_HEIGHT | |
| width, height = image.size | |
| in_aspect = width / height | |
| if in_aspect > target_aspect: | |
| new_width = round(height * target_aspect) | |
| left = (width - new_width) // 2 | |
| image = image.crop((left, 0, left + new_width, height)) | |
| else: | |
| new_height = round(width / target_aspect) | |
| top = (height - new_height) // 2 | |
| image = image.crop((0, top, width, top + new_height)) | |
| return image.resize((LANDSCAPE_WIDTH, LANDSCAPE_HEIGHT), Image.LANCZOS) | |
| def get_duration( | |
| input_image, | |
| prompt, | |
| negative_prompt, | |
| duration_seconds, | |
| guidance_scale, | |
| guidance_scale_2, | |
| steps, | |
| seed, | |
| randomize_seed, | |
| progress, | |
| ): | |
| return steps * 15 | |
| def generate_video( | |
| input_image, | |
| prompt, | |
| negative_prompt=default_negative_prompt, | |
| duration_seconds = MAX_DURATION, | |
| guidance_scale = 2.5, | |
| guidance_scale_2 = 3.5, | |
| steps = 6, | |
| seed = 42, | |
| randomize_seed = False, | |
| progress=gr.Progress(track_tqdm=True), | |
| ): | |
| """ | |
| Generate a video from an input image using the Wan 2.1 I2V model with CausVid LoRA. | |
| This function takes an input image and generates a video animation based on the provided | |
| prompt and parameters. It uses the Wan 2.1 14B Image-to-Video model with CausVid LoRA | |
| for fast generation in 4-8 steps. | |
| Args: | |
| input_image (PIL.Image): The input image to animate. Will be resized to target dimensions. | |
| prompt (str): Text prompt describing the desired animation or motion. | |
| negative_prompt (str, optional): Negative prompt to avoid unwanted elements. | |
| Defaults to default_negative_prompt (contains unwanted visual artifacts). | |
| duration_seconds (float, optional): Duration of the generated video in seconds. | |
| Defaults to 2. Clamped between MIN_FRAMES_MODEL/FIXED_FPS and MAX_FRAMES_MODEL/FIXED_FPS. | |
| guidance_scale (float, optional): Controls adherence to the prompt. Higher values = more adherence. | |
| Defaults to 1.0. Range: 0.0-20.0. | |
| guidance_scale_2 (float, optional): Controls adherence to the prompt. Higher values = more adherence. | |
| Defaults to 1.0. Range: 0.0-20.0. | |
| steps (int, optional): Number of inference steps. More steps = higher quality but slower. | |
| Defaults to 4. Range: 1-30. | |
| seed (int, optional): Random seed for reproducible results. Defaults to 42. | |
| Range: 0 to MAX_SEED (2147483647). | |
| randomize_seed (bool, optional): Whether to use a random seed instead of the provided seed. | |
| Defaults to False. | |
| progress (gr.Progress, optional): Gradio progress tracker. Defaults to gr.Progress(track_tqdm=True). | |
| Returns: | |
| tuple: A tuple containing: | |
| - video_path (str): Path to the generated video file (.mp4) | |
| - current_seed (int): The seed used for generation (useful when randomize_seed=True) | |
| Raises: | |
| gr.Error: If input_image is None (no image uploaded). | |
| Note: | |
| - The function automatically resizes the input image to the target dimensions | |
| - Frame count is calculated as duration_seconds * FIXED_FPS (24) | |
| - Output dimensions are adjusted to be multiples of MOD_VALUE (32) | |
| - The function uses GPU acceleration via the @spaces.GPU decorator | |
| - Generation time varies based on steps and duration (see get_duration function) | |
| """ | |
| if input_image is None: | |
| raise gr.Error("Please upload an input image.") | |
| num_frames = np.clip(int(round(duration_seconds * FIXED_FPS)), MIN_FRAMES_MODEL, MAX_FRAMES_MODEL) | |
| current_seed = random.randint(0, MAX_SEED) if randomize_seed else int(seed) | |
| resized_image = resize_image(input_image) | |
| output_frames_list = pipe( | |
| image=resized_image, | |
| prompt=prompt, | |
| negative_prompt=negative_prompt, | |
| height=resized_image.height, | |
| width=resized_image.width, | |
| num_frames=num_frames, | |
| guidance_scale=float(guidance_scale), | |
| guidance_scale_2=float(guidance_scale_2), | |
| num_inference_steps=int(steps), | |
| generator=torch.Generator(device="cuda").manual_seed(current_seed), | |
| ).frames[0] | |
| with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as tmpfile: | |
| video_path = tmpfile.name | |
| export_to_video(output_frames_list, video_path, fps=FIXED_FPS) | |
| return video_path, current_seed | |
| with gr.Blocks() as demo: | |
| gr.Markdown("# Fast 4 steps Wan 2.1 I2V (14B) with CausVid LoRA") | |
| gr.Markdown("[CausVid](https://github.com/tianweiy/CausVid) is a distilled version of Wan 2.1 to run faster in just 4-8 steps, [extracted as LoRA by Kijai](https://huggingface.co/Kijai/WanVideo_comfy/blob/main/Wan21_CausVid_14B_T2V_lora_rank32.safetensors) and is compatible with 🧨 diffusers") | |
| with gr.Row(): | |
| with gr.Column(): | |
| input_image_component = gr.Image(type="pil", label="Input Image (auto-resized to target H/W)") | |
| prompt_input = gr.Textbox(label="Prompt", value=default_prompt_i2v) | |
| duration_seconds_input = gr.Slider(minimum=MIN_DURATION, maximum=MAX_DURATION, step=0.1, value=MAX_DURATION, label="Duration (seconds)", info=f"Clamped to model's {MIN_FRAMES_MODEL}-{MAX_FRAMES_MODEL} frames at {FIXED_FPS}fps.") | |
| with gr.Accordion("Advanced Settings", open=False): | |
| negative_prompt_input = gr.Textbox(label="Negative Prompt", value=default_negative_prompt, lines=3) | |
| seed_input = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=42, interactive=True) | |
| randomize_seed_checkbox = gr.Checkbox(label="Randomize seed", value=True, interactive=True) | |
| steps_slider = gr.Slider(minimum=1, maximum=30, step=1, value=6, label="Inference Steps") | |
| guidance_scale_input = gr.Slider(minimum=0.0, maximum=10.0, step=0.5, value=3, label="Guidance Scale - high noise stage") | |
| guidance_scale_2_input = gr.Slider(minimum=0.0, maximum=10.0, step=0.5, value=1, label="Guidance Scale 2 - low noise stage") | |
| generate_button = gr.Button("Generate Video", variant="primary") | |
| with gr.Column(): | |
| video_output = gr.Video(label="Generated Video", autoplay=True, interactive=False) | |
| ui_inputs = [ | |
| input_image_component, prompt_input, | |
| negative_prompt_input, duration_seconds_input, | |
| guidance_scale_input, guidance_scale_2_input, steps_slider, seed_input, randomize_seed_checkbox | |
| ] | |
| generate_button.click(fn=generate_video, inputs=ui_inputs, outputs=[video_output, seed_input]) | |
| gr.Examples( | |
| examples=[ | |
| [ | |
| "wan_i2v_input.JPG", | |
| "Summer beach vacation style, a white cat wearing sunglasses sits on a surfboard. The fluffy-furred feline gazes directly at the camera with a relaxed expression. Blurred beach scenery forms the background featuring crystal-clear waters, distant green hills, and a blue sky dotted with white clouds. The cat assumes a naturally relaxed posture, as if savoring the sea breeze and warm sunlight. A close-up shot highlights the feline's intricate details and the refreshing atmosphere of the seaside.", | |
| ], | |
| ], | |
| inputs=[input_image_component, prompt_input], outputs=[video_output, seed_input], fn=generate_video, cache_examples="lazy" | |
| ) | |
| if __name__ == "__main__": | |
| demo.queue().launch(mcp_server=True) | |