ltx-dev-fast / optimization_utils.py
sayakpaul's picture
sayakpaul HF Staff
up
10bbb52
"""
Taken from https://huggingface.co/spaces/cbensimon/wan2-1-fast/
"""
import contextlib
from contextvars import ContextVar
from io import BytesIO
from typing import Any, cast
from unittest.mock import patch
import torch
from torch.utils._pytree import tree_map_only
from torch._inductor.package.package import package_aoti
from torch._inductor.package import load_package
from torch.export.pt2_archive._package import AOTICompiledModel
from torch.export.pt2_archive._package_weights import Weights
INDUCTOR_CONFIGS_OVERRIDES = {
"aot_inductor.package_constants_in_so": False,
"aot_inductor.package_constants_on_disk": True,
"aot_inductor.package": True,
}
class ZeroGPUWeights:
def __init__(self, constants_map: dict[str, torch.Tensor], to_cuda: bool = False):
if to_cuda:
self.constants_map = {name: tensor.to("cuda") for name, tensor in constants_map.items()}
else:
self.constants_map = constants_map
def __reduce__(self):
constants_map: dict[str, torch.Tensor] = {}
for name, tensor in self.constants_map.items():
tensor_ = torch.empty_like(tensor, device="cpu").pin_memory()
constants_map[name] = tensor_.copy_(tensor).detach().share_memory_()
return ZeroGPUWeights, (constants_map, True)
class ZeroGPUCompiledModel:
def __init__(self, archive_file: torch.types.FileLike, weights: ZeroGPUWeights):
self.archive_file = archive_file
self.weights = weights
self.compiled_model: ContextVar[AOTICompiledModel | None] = ContextVar("compiled_model", default=None)
def __call__(self, *args, **kwargs):
if (compiled_model := self.compiled_model.get()) is None:
# compiled_model = cast(AOTICompiledModel, torch._inductor.aoti_load_package(self.archive_file))
# compiled_model = torch._inductor.aoti_load_package(self.archive_file, run_single_threaded=True)
compiled_model = load_package(self.archive_file, run_single_threaded=True)
compiled_model.load_constants(self.weights.constants_map, check_full_update=True, user_managed=True)
self.compiled_model.set(compiled_model)
return compiled_model(*args, **kwargs)
def __reduce__(self):
return ZeroGPUCompiledModel, (self.archive_file, self.weights)
def aoti_compile(
exported_program: torch.export.ExportedProgram,
inductor_configs: dict[str, Any] | None = None,
):
inductor_configs = (inductor_configs or {}) | INDUCTOR_CONFIGS_OVERRIDES
gm = cast(torch.fx.GraphModule, exported_program.module())
assert exported_program.example_inputs is not None
args, kwargs = exported_program.example_inputs
artifacts = torch._inductor.aot_compile(gm, args, kwargs, options=inductor_configs)
archive_file = BytesIO()
files: list[str | Weights] = [file for file in artifacts if isinstance(file, str)]
package_aoti(archive_file, files)
(weights,) = (artifact for artifact in artifacts if isinstance(artifact, Weights))
zerogpu_weights = ZeroGPUWeights({name: weights.get_weight(name)[0] for name in weights}, to_cuda=True)
return ZeroGPUCompiledModel(archive_file, zerogpu_weights)
@contextlib.contextmanager
def capture_component_call(
pipeline: Any,
component_name: str,
component_method="forward",
):
class CapturedCallException(Exception):
def __init__(self, *args, **kwargs):
super().__init__()
self.args = args
self.kwargs = kwargs
class CapturedCall:
def __init__(self):
self.args: tuple[Any, ...] = ()
self.kwargs: dict[str, Any] = {}
component = getattr(pipeline, component_name)
captured_call = CapturedCall()
def capture_call(*args, **kwargs):
raise CapturedCallException(*args, **kwargs)
with patch.object(component, component_method, new=capture_call):
try:
yield captured_call
except CapturedCallException as e:
captured_call.args = e.args
captured_call.kwargs = e.kwargs
# Taken from
# https://github.com/huggingface/flux-fast/blob/5027798d7f69a8e0e478df92f48663c40727f8ea/utils/pipeline_utils.py#L198C1-L231C14
def cudagraph(f):
_graphs = {}
def f_(*args, **kwargs):
key = hash(tuple(tuple(kwargs[a].shape) for a in sorted(kwargs.keys())
if isinstance(kwargs[a], torch.Tensor)))
if key in _graphs:
# use the cached wrapper if one exists. this will perform CUDAGraph replay
wrapped, *_ = _graphs[key]
return wrapped(*args, **kwargs)
# record a new CUDAGraph and cache it for future use
g = torch.cuda.CUDAGraph()
in_args, in_kwargs = tree_map_only(torch.Tensor, lambda t: t.clone(), (args, kwargs))
f(*in_args, **in_kwargs) # stream warmup
with torch.cuda.graph(g):
out_tensors = f(*in_args, **in_kwargs)
def wrapped(*args, **kwargs):
# note that CUDAGraphs require inputs / outputs to be in fixed memory locations.
# inputs must be copied into the fixed input memory locations.
[a.copy_(b) for a, b in zip(in_args, args) if isinstance(a, torch.Tensor)]
for key in kwargs:
if isinstance(kwargs[key], torch.Tensor):
in_kwargs[key].copy_(kwargs[key])
g.replay()
# clone() outputs on the way out to disconnect them from the fixed output memory
# locations. this allows for CUDAGraph reuse without accidentally overwriting memory
return [o.clone() for o in out_tensors]
# cache function that does CUDAGraph replay
_graphs[key] = (wrapped, g, in_args, in_kwargs, out_tensors)
return wrapped(*args, **kwargs)
return f_