sayakpaul HF Staff commited on
Commit
bb10560
·
1 Parent(s): ee4246b
Files changed (5) hide show
  1. README.md +1 -6
  2. aoti.py +15 -0
  3. app.py +33 -84
  4. hub_utils.py +0 -35
  5. optimization.py +0 -43
README.md CHANGED
@@ -1,5 +1,5 @@
1
  ---
2
- title: Flux.1-Dev Compiled Graph
3
  emoji: 🖼️
4
  colorFrom: yellow
5
  colorTo: green
@@ -7,11 +7,6 @@ sdk: gradio
7
  sdk_version: 5.39.0
8
  app_file: app.py
9
  pinned: false
10
- hf_oauth: true
11
- hf_oauth_scopes:
12
- - read-repos
13
- - write-repos
14
- - manage-repos
15
  ---
16
 
17
  Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
1
  ---
2
+ title: Flux.1-Dev Use Compiled Graph
3
  emoji: 🖼️
4
  colorFrom: yellow
5
  colorTo: green
 
7
  sdk_version: 5.39.0
8
  app_file: app.py
9
  pinned: false
 
 
 
 
 
10
  ---
11
 
12
  Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
aoti.py ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from huggingface_hub import hf_hub_download
3
+ from spaces.zero.torch.aoti import ZeroGPUCompiledModel
4
+ from spaces.zero.torch.aoti import ZeroGPUWeights
5
+ from spaces.zero.torch.aoti import drain_module_parameters
6
+
7
+
8
+ def aoti_load_(module: torch.nn.Module, repo_id: str, filename: str):
9
+ compiled_graph_file = hf_hub_download(repo_id, filename)
10
+ state_dict = module.state_dict()
11
+ zerogpu_weights = ZeroGPUWeights({name: weight for name, weight in state_dict.items()})
12
+ compiled = ZeroGPUCompiledModel(compiled_graph_file, zerogpu_weights)
13
+
14
+ setattr(module, "forward", compiled)
15
+ drain_module_parameters(module)
app.py CHANGED
@@ -1,90 +1,39 @@
1
- import spaces
 
 
2
  import gradio as gr
 
3
  import torch
4
- from diffusers import DiffusionPipeline
5
- from optimization import compile_transformer
6
- from hub_utils import _push_compiled_graph_to_hub
7
- from huggingface_hub import whoami
8
- import time
9
 
10
  # --- Model Loading ---
11
  dtype = torch.bfloat16
12
  device = "cuda" if torch.cuda.is_available() else "cpu"
13
-
14
- # Load the model pipeline
15
- pipe = DiffusionPipeline.from_pretrained("black-forest-labs/Flux.1-Dev", torch_dtype=dtype).to(device)
16
-
17
-
18
- @spaces.GPU(duration=1200)
19
- def push_to_hub(repo_id, filename, oauth_token: gr.OAuthToken, progress=gr.Progress(track_tqdm=True)):
20
- if not filename.endswith(".pt2"):
21
- raise NotImplementedError("The filename must end with a `.pt2` extension.")
22
-
23
- # this will throw if token is invalid
24
- try:
25
- _ = whoami(oauth_token.token)
26
-
27
- # --- Ahead-of-time compilation ---
28
- start = time.perf_counter()
29
- compiled_transformer = compile_transformer(pipe, prompt="prompt")
30
- if torch.cuda.is_available():
31
- torch.cuda.synchronize()
32
- end = time.perf_counter()
33
- print(f"Compilation took: {start - end} seconds.")
34
-
35
- token = oauth_token.token
36
- out = _push_compiled_graph_to_hub(
37
- compiled_transformer.archive_file, repo_id=repo_id, token=token, path_in_repo=filename
38
- )
39
- if not isinstance(out, str) and hasattr(out, "commit_url"):
40
- commit_url = out.commit_url
41
- return f"[{commit_url}]({commit_url})"
42
- else:
43
- return out
44
- except Exception as e:
45
- raise gr.Error(
46
- f"""Oops, you forgot to login. Please use the loggin button on the top left to migrate your repo {e}"""
47
- )
48
-
49
-
50
- css = """
51
- #col-container {
52
- margin: 0 auto;
53
- max-width: 520px;
54
- }
55
- """
56
- with gr.Blocks(css=css) as demo:
57
- with gr.Column(elem_id="col-container"):
58
- gr.Markdown(
59
- "## Compile [Flux.1-Dev](https://hf.co/black-forest-labs/Flux.1-Dev) graph ahead of time & push to the Hub"
60
- )
61
- gr.Markdown(
62
- "Enter a **repo_id** and **filename**. This repo automatically compiles the Flux.1-Dev model ahead of time. Read more about this in [this post](https://huggingface.co/blog/zerogpu-aoti)."
63
- )
64
- gr.Markdown("Depending on the model, it can take some time (2-10 mins) to compile.")
65
-
66
- repo_id = gr.Textbox(label="repo_id", placeholder="e.g. sayakpaul/qwen-aot")
67
- filename = gr.Textbox(label="filename", placeholder="e.g. compiled.pt2")
68
-
69
- run = gr.Button("Push graph to Hub", variant="primary")
70
-
71
- markdown_out = gr.Markdown()
72
-
73
- run.click(push_to_hub, inputs=[repo_id, filename], outputs=[markdown_out])
74
-
75
-
76
- def swap_visibilty(profile: gr.OAuthProfile | None):
77
- return gr.update(elem_classes=["main_ui_logged_in"]) if profile else gr.update(elem_classes=["main_ui_logged_out"])
78
-
79
-
80
- css_login = """
81
- .main_ui_logged_out{opacity: 0.3; pointer-events: none; margin: 0 auto; max-width: 520px}
82
- """
83
- with gr.Blocks(css=css_login) as demo_login:
84
- gr.LoginButton()
85
- with gr.Column(elem_classes="main_ui_logged_out") as main_ui:
86
- demo.render()
87
- demo_login.load(fn=swap_visibilty, outputs=main_ui)
88
-
89
- demo_login.queue()
90
- demo_login.launch()
 
1
+
2
+ from datetime import datetime
3
+
4
  import gradio as gr
5
+ import spaces
6
  import torch
7
+ from diffusers import FluxPipeline
8
+
9
+ from aoti import aoti_load
 
 
10
 
11
  # --- Model Loading ---
12
  dtype = torch.bfloat16
13
  device = "cuda" if torch.cuda.is_available() else "cpu"
14
+ pipeline = FluxPipeline.from_pretrained(
15
+ "black-forest-labs/Flux.1-Dev", torch_dtype=torch.bfloat16
16
+ ).to(device)
17
+ pipeline.transformer.fuse_qkv_projections()
18
+ aoti_load_(pipeline.transformer, "sayakpaul/flux-dev-aot", "flux-dev-aot.pt2")
19
+
20
+
21
+ @spaces.GPU
22
+ def generate_image(prompt: str, progress=gr.Progress(track_tqdm=True)):
23
+ generator = torch.Generator(device='cuda').manual_seed(42)
24
+ t0 = datetime.now()
25
+ output = pipeline(
26
+ prompt=prompt,
27
+ num_inference_steps=28,
28
+ generator=generator,
29
+ )
30
+ return [(output.images[0], f'{(datetime.now() - t0).total_seconds():.2f}s')]
31
+
32
+
33
+ gr.Interface(
34
+ fn=generate_image,
35
+ inputs=gr.Text(label="Prompt"),
36
+ outputs=gr.Gallery(),
37
+ examples=["A cat playing with a ball of yarn"],
38
+ cache_examples=False,
39
+ ).launch()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
hub_utils.py DELETED
@@ -1,35 +0,0 @@
1
- from io import BytesIO
2
- from huggingface_hub import create_repo, upload_file
3
- import tempfile
4
- import os
5
-
6
- DEFAULT_ARCHIVE_FILENAME = "archived_graph.pt2"
7
-
8
-
9
- def _push_compiled_graph_to_hub(archive: BytesIO, repo_id, **kwargs):
10
- if not isinstance(archive, BytesIO):
11
- raise NotImplementedError("Incorrect type of `archive` provided.")
12
-
13
- commit_message = kwargs.pop("commit_message", "Uploaded from spaces.")
14
- private = kwargs.pop("private", False)
15
- path_in_repo = kwargs.pop("path_in_repo", DEFAULT_ARCHIVE_FILENAME)
16
- token = kwargs.pop("token")
17
- repo_id = create_repo(repo_id, private=private, exist_ok=True, token=token).repo_id
18
-
19
- with tempfile.TemporaryDirectory() as tmpdir:
20
- output_path = os.path.join(tmpdir, os.path.basename(path_in_repo))
21
- with open(output_path, "wb") as f:
22
- f.write(archive.getvalue())
23
-
24
- try:
25
- info = upload_file(
26
- repo_id=repo_id,
27
- path_or_fileobj=output_path,
28
- path_in_repo=os.path.basename(path_in_repo),
29
- commit_message=commit_message,
30
- token=token,
31
- )
32
- return info
33
- except Exception as e:
34
- print(f"File couldn't be pushed to the Hub with the following error: {e}.")
35
- return e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
optimization.py DELETED
@@ -1,43 +0,0 @@
1
- import spaces
2
- from typing import Any
3
- from typing import Callable
4
- from typing import ParamSpec
5
- import torch
6
- from torch.utils._pytree import tree_map
7
-
8
- P = ParamSpec("P")
9
-
10
- TRANSFORMER_HIDDEN_DIM = torch.export.Dim("hidden", min=4096, max=8212)
11
-
12
- # Specific to Flux. More about this is available in
13
- # https://huggingface.co/blog/zerogpu-aoti
14
- TRANSFORMER_DYNAMIC_SHAPES = {
15
- "hidden_states": {1: TRANSFORMER_HIDDEN_DIM},
16
- "img_ids": {0: TRANSFORMER_HIDDEN_DIM},
17
- }
18
-
19
- INDUCTOR_CONFIGS = {
20
- "conv_1x1_as_mm": True,
21
- "epilogue_fusion": False,
22
- "coordinate_descent_tuning": True,
23
- "coordinate_descent_check_all_directions": True,
24
- "max_autotune": True,
25
- "triton.cudagraphs": True,
26
- }
27
-
28
-
29
- def compile_transformer(pipeline: Callable[P, Any], *args: P.args, **kwargs: P.kwargs):
30
- def f():
31
- with spaces.aoti_capture(pipeline.transformer) as call:
32
- pipeline(*args, **kwargs)
33
-
34
- dynamic_shapes = tree_map(lambda v: None, call.kwargs)
35
- dynamic_shapes |= TRANSFORMER_DYNAMIC_SHAPES
36
-
37
- exported = torch.export.export(
38
- mod=pipeline.transformer, args=call.args, kwargs=call.kwargs, dynamic_shapes=dynamic_shapes
39
- )
40
- return spaces.aoti_compile(exported, INDUCTOR_CONFIGS)
41
-
42
- compiled_transformer = f()
43
- return compiled_transformer