Spaces:
Runtime error
Runtime error
import spaces | |
import os | |
from stablepy import Model_Diffusers | |
from stablepy.diffusers_vanilla.model import scheduler_names | |
from stablepy.diffusers_vanilla.style_prompt_config import STYLE_NAMES | |
import torch | |
import re | |
import shutil | |
import random | |
from stablepy import ( | |
CONTROLNET_MODEL_IDS, | |
VALID_TASKS, | |
T2I_PREPROCESSOR_NAME, | |
FLASH_LORA, | |
SCHEDULER_CONFIG_MAP, | |
scheduler_names, | |
IP_ADAPTER_MODELS, | |
IP_ADAPTERS_SD, | |
IP_ADAPTERS_SDXL, | |
REPO_IMAGE_ENCODER, | |
ALL_PROMPT_WEIGHT_OPTIONS, | |
SD15_TASKS, | |
SDXL_TASKS, | |
) | |
import urllib.parse | |
from config import ( | |
MINIMUM_IMAGE_NUMBER, | |
MAXIMUM_IMAGE_NUMBER, | |
DEFAULT_NEGATIVE_PROMPT, | |
DEFAULT_POSITIVE_PROMPT | |
) | |
from models.vae import VAE_LIST as download_vae | |
from models.checkpoints import CHECKPOINT_LIST as download_model | |
from examples.examples import example_prompts | |
preprocessor_controlnet = { | |
"openpose": [ | |
"Openpose", | |
"None", | |
], | |
"scribble": [ | |
"HED", | |
"Pidinet", | |
"None", | |
], | |
"softedge": [ | |
"Pidinet", | |
"HED", | |
"HED safe", | |
"Pidinet safe", | |
"None", | |
], | |
"segmentation": [ | |
"UPerNet", | |
"None", | |
], | |
"depth": [ | |
"DPT", | |
"Midas", | |
"None", | |
], | |
"normalbae": [ | |
"NormalBae", | |
"None", | |
], | |
"lineart": [ | |
"Lineart", | |
"Lineart coarse", | |
"Lineart (anime)", | |
"None", | |
"None (anime)", | |
], | |
"shuffle": [ | |
"ContentShuffle", | |
"None", | |
], | |
"canny": [ | |
"Canny" | |
], | |
"mlsd": [ | |
"MLSD" | |
], | |
"ip2p": [ | |
"ip2p" | |
] | |
} | |
task_stablepy = { | |
'txt2img': 'txt2img', | |
'img2img': 'img2img', | |
'inpaint': 'inpaint', | |
# 'canny T2I Adapter': 'sdxl_canny_t2i', # NO HAVE STEP CALLBACK PARAMETERS SO NOT WORKS WITH DIFFUSERS 0.29.0 | |
# 'sketch T2I Adapter': 'sdxl_sketch_t2i', | |
# 'lineart T2I Adapter': 'sdxl_lineart_t2i', | |
# 'depth-midas T2I Adapter': 'sdxl_depth-midas_t2i', | |
# 'openpose T2I Adapter': 'sdxl_openpose_t2i', | |
'openpose ControlNet': 'openpose', | |
'canny ControlNet': 'canny', | |
'mlsd ControlNet': 'mlsd', | |
'scribble ControlNet': 'scribble', | |
'softedge ControlNet': 'softedge', | |
'segmentation ControlNet': 'segmentation', | |
'depth ControlNet': 'depth', | |
'normalbae ControlNet': 'normalbae', | |
'lineart ControlNet': 'lineart', | |
# 'lineart_anime ControlNet': 'lineart_anime', | |
'shuffle ControlNet': 'shuffle', | |
'ip2p ControlNet': 'ip2p', | |
'optical pattern ControlNet': 'pattern', | |
'tile realistic': 'sdxl_tile_realistic', | |
} | |
task_model_list = list(task_stablepy.keys()) | |
def download_things(directory, url, hf_token="", civitai_api_key=""): | |
url = url.strip() | |
if "drive.google.com" in url: | |
original_dir = os.getcwd() | |
os.chdir(directory) | |
os.system(f"gdown --fuzzy {url}") | |
os.chdir(original_dir) | |
elif "huggingface.co" in url: | |
url = url.replace("?download=true", "") | |
# url = urllib.parse.quote(url, safe=':/') # fix encoding | |
if "/blob/" in url: | |
url = url.replace("/blob/", "/resolve/") | |
user_header = f'"Authorization: Bearer {hf_token}"' | |
if hf_token: | |
os.system( | |
f"aria2c --console-log-level=error --summary-interval=10 --header={user_header} -c -x 16 -k 1M -s 16 {url} -d {directory} -o {url.split('/')[-1]}") | |
else: | |
os.system( | |
f"aria2c --optimize-concurrent-downloads --console-log-level=error --summary-interval=10 -c -x 16 -k " | |
f"1M -s 16 {url} -d {directory} -o {url.split('/')[-1]}") | |
elif "civitai.com" in url: | |
if "?" in url: | |
url = url.split("?")[0] | |
if civitai_api_key: | |
url = url + f"?token={civitai_api_key}" | |
os.system( | |
f"aria2c --console-log-level=error --summary-interval=10 -c -x 16 -k 1M -s 16 -d {directory} {url}") | |
else: | |
print("\033[91mYou need an API key to download Civitai models.\033[0m") | |
else: | |
os.system(f"aria2c --console-log-level=error --summary-interval=10 -c -x 16 -k 1M -s 16 -d {directory} {url}") | |
def get_model_list(directory_path): | |
model_list: list = [] | |
valid_extensions = { | |
'.ckpt', | |
'.pt', | |
'.pth', | |
'.safetensors', | |
'.bin' | |
} | |
for filename in os.listdir(directory_path): | |
if os.path.splitext(filename)[1] in valid_extensions: | |
name_without_extension = os.path.splitext(filename)[0] | |
file_path = os.path.join(directory_path, filename) | |
# model_list.append((name_without_extension, file_path)) | |
model_list.append(file_path) | |
print('\033[34mFILE: ' + file_path + '\033[0m') | |
return model_list | |
def process_string(input_string): | |
parts = input_string.split('/') | |
if len(parts) == 2: | |
first_element = parts[1] | |
complete_string = input_string | |
result = (first_element, complete_string) | |
return result | |
else: | |
return None | |
directory_models = 'models' | |
os.makedirs(directory_models, exist_ok=True) | |
directory_loras = 'loras' | |
os.makedirs(directory_loras, exist_ok=True) | |
directory_vaes = 'vaes' | |
os.makedirs(directory_vaes, exist_ok=True) | |
# - **Download LoRAs** | |
download_lora = ( | |
"https://civitai.com/api/download/models/423719, " | |
"https://civitai.com/api/download/models/50503, " | |
"https://civitai.com/api/download/models/133160, " | |
"https://civitai.com/api/download/models/29332, " | |
"https://huggingface.co/Leopain/color/resolve/main/Coloring_book_-_LineArt.safetensors, " | |
"https://civitai.com/api/download/models/135867, " | |
"https://civitai.com/api/download/models/145907, " | |
"https://huggingface.co/Linaqruf/anime-detailer-xl-lora/resolve/main/anime-detailer-xl.safetensors?download=true, " | |
"https://huggingface.co/Linaqruf/style-enhancer-xl-lora/resolve/main/style-enhancer-xl.safetensors?download=true, " | |
"https://civitai.com/api/download/models/28609, " | |
"https://huggingface.co/ByteDance/Hyper-SD/resolve/main/Hyper-SD15-8steps-CFG-lora.safetensors?download=true, " | |
"https://huggingface.co/ByteDance/Hyper-SD/resolve/main/Hyper-SDXL-8steps-CFG-lora.safetensors?download=true, " | |
"https://civitai.com/api/download/models/30666 " | |
) | |
load_diffusers_format_model = [ | |
'stabilityai/stable-diffusion-xl-base-1.0', | |
'cagliostrolab/animagine-xl-3.1', | |
'misri/epicrealismXL_v7FinalDestination', | |
'misri/juggernautXL_juggernautX', | |
'misri/zavychromaxl_v80', | |
'SG161222/RealVisXL_V4.0', | |
'misri/newrealityxlAllInOne_Newreality40', | |
'eienmojiki/Anything-XL', | |
'eienmojiki/Starry-XL-v5.2', | |
'gsdf/CounterfeitXL', | |
'kitty7779/ponyDiffusionV6XL', | |
'John6666/ebara-mfcg-pony-mix-v12-sdxl', | |
'John6666/t-ponynai3-v51-sdxl', | |
'yodayo-ai/kivotos-xl-2.0', | |
'yodayo-ai/holodayo-xl-2.1', | |
'digiplay/majicMIX_sombre_v2', | |
'digiplay/majicMIX_realistic_v6', | |
'digiplay/majicMIX_realistic_v7', | |
'digiplay/DreamShaper_8', | |
'digiplay/BeautifulArt_v1', | |
'digiplay/DarkSushi2.5D_v1', | |
'digiplay/darkphoenix3D_v1.1', | |
'digiplay/BeenYouLiteL11_diffusers', | |
'rubbrband/revAnimated_v2Rebirth', | |
'youknownothing/cyberrealistic_v50', | |
'votepurchase/counterfeitV30_v30', | |
'Meina/MeinaMix_V11', | |
'Meina/MeinaUnreal_V5', | |
'Meina/MeinaPastel_V7', | |
'rubbrband/realcartoon3d_v16', | |
'rubbrband/realcartoonRealistic_v14', | |
] | |
CIVITAI_API_KEY: str = os.environ.get("CIVITAI_API_KEY") | |
hf_token: str = os.environ.get("HF_TOKEN") | |
# Download stuffs | |
for url in [url.strip() for url in download_model.split(',')]: | |
if not os.path.exists(f"./models/{url.split('/')[-1]}"): | |
download_things(directory_models, url, hf_token, CIVITAI_API_KEY) | |
for url in [url.strip() for url in download_vae.split(',')]: | |
if not os.path.exists(f"./vaes/{url.split('/')[-1]}"): | |
download_things(directory_vaes, url, hf_token, CIVITAI_API_KEY) | |
for url in [url.strip() for url in download_lora.split(',')]: | |
if not os.path.exists(f"./loras/{url.split('/')[-1]}"): | |
download_things(directory_loras, url, hf_token, CIVITAI_API_KEY) | |
# Download Embeddings | |
directory_embeds = 'embedings' | |
os.makedirs(directory_embeds, exist_ok=True) | |
download_embeds = [ | |
'https://huggingface.co/datasets/Nerfgun3/bad_prompt/blob/main/bad_prompt_version2.pt', | |
'https://huggingface.co/embed/negative/resolve/main/EasyNegativeV2.safetensors', | |
'https://huggingface.co/embed/negative/resolve/main/bad-hands-5.pt', | |
] | |
for url_embed in download_embeds: | |
if not os.path.exists(f"./embedings/{url_embed.split('/')[-1]}"): | |
download_things(directory_embeds, url_embed, hf_token, CIVITAI_API_KEY) | |
# Build list models | |
embed_list = get_model_list(directory_embeds) | |
model_list = get_model_list(directory_models) | |
model_list = load_diffusers_format_model + model_list | |
lora_model_list = get_model_list(directory_loras) | |
lora_model_list.insert(0, "None") | |
vae_model_list = get_model_list(directory_vaes) | |
vae_model_list.insert(0, "None") | |
def get_my_lora(link_url): | |
for url in [url.strip() for url in link_url.split(',')]: | |
if not os.path.exists(f"./loras/{url.split('/')[-1]}"): | |
download_things(directory_loras, url, hf_token, CIVITAI_API_KEY) | |
new_lora_model_list = get_model_list(directory_loras) | |
new_lora_model_list.insert(0, "None") | |
return gr.update( | |
choices=new_lora_model_list | |
), gr.update( | |
choices=new_lora_model_list | |
), gr.update( | |
choices=new_lora_model_list | |
), gr.update( | |
choices=new_lora_model_list | |
), gr.update( | |
choices=new_lora_model_list | |
), | |
print('\033[33m🏁 Download and listing of valid models completed.\033[0m') | |
upscaler_dict_gui = { | |
None: None, | |
"Lanczos": "Lanczos", | |
"Nearest": "Nearest", | |
"RealESRGAN_x4plus": "https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.0/RealESRGAN_x4plus.pth", | |
"RealESRNet_x4plus": "https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.1/RealESRNet_x4plus.pth", | |
"RealESRGAN_x4plus_anime_6B": "https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.2.4/RealESRGAN_x4plus_anime_6B.pth", | |
"RealESRGAN_x2plus": "https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.1/RealESRGAN_x2plus.pth", | |
"realesr-animevideov3": "https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-animevideov3.pth", | |
"realesr-general-x4v3": "https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-x4v3.pth", | |
"realesr-general-wdn-x4v3": "https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-wdn-x4v3.pth", | |
"4x-UltraSharp": "https://huggingface.co/Shandypur/ESRGAN-4x-UltraSharp/resolve/main/4x-UltraSharp.pth", | |
"4x_foolhardy_Remacri": "https://huggingface.co/FacehugmanIII/4x_foolhardy_Remacri/resolve/main/4x_foolhardy_Remacri.pth", | |
"Remacri4xExtraSmoother": "https://huggingface.co/hollowstrawberry/upscalers-backup/resolve/main/ESRGAN/Remacri%204x%20ExtraSmoother.pth", | |
"AnimeSharp4x": "https://huggingface.co/hollowstrawberry/upscalers-backup/resolve/main/ESRGAN/AnimeSharp%204x.pth", | |
"lollypop": "https://huggingface.co/hollowstrawberry/upscalers-backup/resolve/main/ESRGAN/lollypop.pth", | |
"RealisticRescaler4x": "https://huggingface.co/hollowstrawberry/upscalers-backup/resolve/main/ESRGAN/RealisticRescaler%204x.pth", | |
"NickelbackFS4x": "https://huggingface.co/hollowstrawberry/upscalers-backup/resolve/main/ESRGAN/NickelbackFS%204x.pth" | |
} | |
def extract_parameters(input_string): | |
parameters = {} | |
input_string = input_string.replace("\n", "") | |
if not "Negative prompt:" in input_string: | |
print("Negative prompt not detected") | |
parameters["prompt"] = input_string | |
return parameters | |
parm = input_string.split("Negative prompt:") | |
parameters["prompt"] = parm[0] | |
if not "Steps:" in parm[1]: | |
print("Steps not detected") | |
parameters["neg_prompt"] = parm[1] | |
return parameters | |
parm = parm[1].split("Steps:") | |
parameters["neg_prompt"] = parm[0] | |
input_string = "Steps:" + parm[1] | |
# Extracting Steps | |
steps_match = re.search(r'Steps: (\d+)', input_string) | |
if steps_match: | |
parameters['Steps'] = int(steps_match.group(1)) | |
# Extracting Size | |
size_match = re.search(r'Size: (\d+x\d+)', input_string) | |
if size_match: | |
parameters['Size'] = size_match.group(1) | |
width, height = map(int, parameters['Size'].split('x')) | |
parameters['width'] = width | |
parameters['height'] = height | |
# Extracting other parameters | |
other_parameters = re.findall(r'(\w+): (.*?)(?=, \w+|$)', input_string) | |
for param in other_parameters: | |
parameters[param[0]] = param[1].strip('"') | |
return parameters | |
####################### | |
# GUI | |
####################### | |
import spaces | |
import gradio as gr | |
from PIL import Image | |
import IPython.display | |
import time, json | |
from IPython.utils import capture | |
import logging | |
logging.getLogger("diffusers").setLevel(logging.ERROR) | |
import diffusers | |
diffusers.utils.logging.set_verbosity(40) | |
import warnings | |
warnings.filterwarnings(action="ignore", category=FutureWarning, module="diffusers") | |
warnings.filterwarnings(action="ignore", category=UserWarning, module="diffusers") | |
warnings.filterwarnings(action="ignore", category=FutureWarning, module="transformers") | |
from stablepy import logger | |
logger.setLevel(logging.DEBUG) | |
def info_html(json_data, title, subtitle): | |
return f""" | |
<div style='padding: 0; border-radius: 10px;'> | |
<p style='margin: 0; font-weight: bold;'>{title}</p> | |
<details> | |
<summary>Details</summary> | |
<p style='margin: 0; font-weight: bold;'>{subtitle}</p> | |
</details> | |
</div> | |
""" | |
class GuiSD: | |
def __init__(self, stream=True): | |
self.model = None | |
print("Loading model...") | |
self.model = Model_Diffusers( | |
base_model_id="cagliostrolab/animagine-xl-3.1", | |
task_name="txt2img", | |
vae_model=None, | |
type_model_precision=torch.float16, | |
retain_task_model_in_cache=False, | |
) | |
def load_new_model(self, model_name, vae_model, task, progress=gr.Progress(track_tqdm=True)): | |
yield f"Loading model: {model_name}" | |
vae_model = vae_model if vae_model != "None" else None | |
if model_name in model_list: | |
model_is_xl = "xl" in model_name.lower() | |
sdxl_in_vae = vae_model and "sdxl" in vae_model.lower() | |
model_type = "SDXL" if model_is_xl else "SD 1.5" | |
incompatible_vae = (model_is_xl and vae_model and not sdxl_in_vae) or (not model_is_xl and sdxl_in_vae) | |
if incompatible_vae: | |
vae_model = None | |
self.model.load_pipe( | |
model_name, | |
task_name=task_stablepy[task], | |
vae_model=vae_model if vae_model != "None" else None, | |
type_model_precision=torch.float16, | |
retain_task_model_in_cache=False, | |
) | |
yield f"Model loaded: {model_name}" | |
def generate_pipeline( | |
self, | |
prompt, | |
neg_prompt, | |
num_images, | |
steps, | |
cfg, | |
clip_skip, | |
seed, | |
lora1, | |
lora_scale1, | |
lora2, | |
lora_scale2, | |
lora3, | |
lora_scale3, | |
lora4, | |
lora_scale4, | |
lora5, | |
lora_scale5, | |
sampler, | |
img_height, | |
img_width, | |
model_name, | |
vae_model, | |
task, | |
image_control, | |
preprocessor_name, | |
preprocess_resolution, | |
image_resolution, | |
style_prompt, # list [] | |
style_json_file, | |
image_mask, | |
strength, | |
low_threshold, | |
high_threshold, | |
value_threshold, | |
distance_threshold, | |
controlnet_output_scaling_in_unet, | |
controlnet_start_threshold, | |
controlnet_stop_threshold, | |
textual_inversion, | |
syntax_weights, | |
upscaler_model_path, | |
upscaler_increases_size, | |
esrgan_tile, | |
esrgan_tile_overlap, | |
hires_steps, | |
hires_denoising_strength, | |
hires_sampler, | |
hires_prompt, | |
hires_negative_prompt, | |
hires_before_adetailer, | |
hires_after_adetailer, | |
loop_generation, | |
leave_progress_bar, | |
disable_progress_bar, | |
image_previews, | |
display_images, | |
save_generated_images, | |
image_storage_location, | |
retain_compel_previous_load, | |
retain_detailfix_model_previous_load, | |
retain_hires_model_previous_load, | |
t2i_adapter_preprocessor, | |
t2i_adapter_conditioning_scale, | |
t2i_adapter_conditioning_factor, | |
xformers_memory_efficient_attention, | |
freeu, | |
generator_in_cpu, | |
adetailer_inpaint_only, | |
adetailer_verbose, | |
adetailer_sampler, | |
adetailer_active_a, | |
prompt_ad_a, | |
negative_prompt_ad_a, | |
strength_ad_a, | |
face_detector_ad_a, | |
person_detector_ad_a, | |
hand_detector_ad_a, | |
mask_dilation_a, | |
mask_blur_a, | |
mask_padding_a, | |
adetailer_active_b, | |
prompt_ad_b, | |
negative_prompt_ad_b, | |
strength_ad_b, | |
face_detector_ad_b, | |
person_detector_ad_b, | |
hand_detector_ad_b, | |
mask_dilation_b, | |
mask_blur_b, | |
mask_padding_b, | |
retain_task_cache_gui, | |
image_ip1, | |
mask_ip1, | |
model_ip1, | |
mode_ip1, | |
scale_ip1, | |
image_ip2, | |
mask_ip2, | |
model_ip2, | |
mode_ip2, | |
scale_ip2, | |
): | |
vae_model = vae_model if vae_model != "None" else None | |
loras_list = [lora1, lora2, lora3, lora4, lora5] | |
vae_msg = f"VAE: {vae_model}" if vae_model else "" | |
msg_lora = [] | |
if model_name in model_list: | |
model_is_xl = "xl" in model_name.lower() | |
sdxl_in_vae = vae_model and "sdxl" in vae_model.lower() | |
model_type = "SDXL" if model_is_xl else "SD 1.5" | |
incompatible_vae = (model_is_xl and vae_model and not sdxl_in_vae) or (not model_is_xl and sdxl_in_vae) | |
if incompatible_vae: | |
msg_inc_vae = ( | |
f"The selected VAE is for a {'SD 1.5' if model_is_xl else 'SDXL'} model, but you" | |
f" are using a {model_type} model. The default VAE " | |
"will be used." | |
) | |
gr.Info(msg_inc_vae) | |
vae_msg = msg_inc_vae | |
vae_model = None | |
for la in loras_list: | |
if la is not None and la != "None" and la in lora_model_list: | |
print(la) | |
lora_type = ("animetarot" in la.lower() or "Hyper-SD15-8steps".lower() in la.lower()) | |
if (model_is_xl and lora_type) or (not model_is_xl and not lora_type): | |
msg_inc_lora = f"The LoRA {la} is for {'SD 1.5' if model_is_xl else 'SDXL'}, but you are using {model_type}." | |
gr.Info(msg_inc_lora) | |
msg_lora.append(msg_inc_lora) | |
task = task_stablepy[task] | |
params_ip_img: list = [] | |
params_ip_msk: list = [] | |
params_ip_model: list = [] | |
params_ip_mode: list = [] | |
params_ip_scale: list = [] | |
all_adapters = [ | |
(image_ip1, mask_ip1, model_ip1, mode_ip1, scale_ip1), | |
(image_ip2, mask_ip2, model_ip2, mode_ip2, scale_ip2), | |
] | |
for imgip, mskip, modelip, modeip, scaleip in all_adapters: | |
if imgip: | |
params_ip_img.append(imgip) | |
if mskip: | |
params_ip_msk.append(mskip) | |
params_ip_model.append(modelip) | |
params_ip_mode.append(modeip) | |
params_ip_scale.append(scaleip) | |
# First load | |
model_precision = torch.float16 | |
if not self.model: | |
from modelstream import Model_Diffusers2 | |
print("Loading model...") | |
self.model = Model_Diffusers2( | |
base_model_id=model_name, | |
task_name=task, | |
vae_model=vae_model if vae_model != "None" else None, | |
type_model_precision=model_precision, | |
retain_task_model_in_cache=retain_task_cache_gui, | |
) | |
if task != "txt2img" and not image_control: | |
raise ValueError( | |
"No control image found: To use this function, " | |
"you have to upload an image in 'Image ControlNet/Inpaint/Img2img'" | |
) | |
if task == "inpaint" and not image_mask: | |
raise ValueError("No mask image found: Specify one in 'Image Mask'") | |
if upscaler_model_path in [None, "Lanczos", "Nearest"]: | |
upscaler_model = upscaler_model_path | |
else: | |
directory_upscalers = 'upscalers' | |
os.makedirs(directory_upscalers, exist_ok=True) | |
url_upscaler = upscaler_dict_gui[upscaler_model_path] | |
if not os.path.exists(f"./upscalers/{url_upscaler.split('/')[-1]}"): | |
download_things(directory_upscalers, url_upscaler, hf_token) | |
upscaler_model = f"./upscalers/{url_upscaler.split('/')[-1]}" | |
logging.getLogger("ultralytics").setLevel(logging.INFO if adetailer_verbose else logging.ERROR) | |
print("Config model:", model_name, vae_model, loras_list) | |
self.model.load_pipe( | |
model_name, | |
task_name=task, | |
vae_model=vae_model if vae_model != "None" else None, | |
type_model_precision=model_precision, | |
retain_task_model_in_cache=retain_task_cache_gui, | |
) | |
if textual_inversion and self.model.class_name == "StableDiffusionXLPipeline": | |
print("No Textual inversion for SDXL") | |
adetailer_params_A = { | |
"face_detector_ad": face_detector_ad_a, | |
"person_detector_ad": person_detector_ad_a, | |
"hand_detector_ad": hand_detector_ad_a, | |
"prompt": prompt_ad_a, | |
"negative_prompt": negative_prompt_ad_a, | |
"strength": strength_ad_a, | |
# "image_list_task" : None, | |
"mask_dilation": mask_dilation_a, | |
"mask_blur": mask_blur_a, | |
"mask_padding": mask_padding_a, | |
"inpaint_only": adetailer_inpaint_only, | |
"sampler": adetailer_sampler, | |
} | |
adetailer_params_B = { | |
"face_detector_ad": face_detector_ad_b, | |
"person_detector_ad": person_detector_ad_b, | |
"hand_detector_ad": hand_detector_ad_b, | |
"prompt": prompt_ad_b, | |
"negative_prompt": negative_prompt_ad_b, | |
"strength": strength_ad_b, | |
# "image_list_task" : None, | |
"mask_dilation": mask_dilation_b, | |
"mask_blur": mask_blur_b, | |
"mask_padding": mask_padding_b, | |
} | |
pipe_params = { | |
"prompt": prompt, | |
"negative_prompt": neg_prompt, | |
"img_height": img_height, | |
"img_width": img_width, | |
"num_images": num_images, | |
"num_steps": steps, | |
"guidance_scale": cfg, | |
"clip_skip": clip_skip, | |
"seed": seed, | |
"image": image_control, | |
"preprocessor_name": preprocessor_name, | |
"preprocess_resolution": preprocess_resolution, | |
"image_resolution": image_resolution, | |
"style_prompt": style_prompt if style_prompt else "", | |
"style_json_file": "", | |
"image_mask": image_mask, # only for Inpaint | |
"strength": strength, # only for Inpaint or ... | |
"low_threshold": low_threshold, | |
"high_threshold": high_threshold, | |
"value_threshold": value_threshold, | |
"distance_threshold": distance_threshold, | |
"lora_A": lora1 if lora1 != "None" else None, | |
"lora_scale_A": lora_scale1, | |
"lora_B": lora2 if lora2 != "None" else None, | |
"lora_scale_B": lora_scale2, | |
"lora_C": lora3 if lora3 != "None" else None, | |
"lora_scale_C": lora_scale3, | |
"lora_D": lora4 if lora4 != "None" else None, | |
"lora_scale_D": lora_scale4, | |
"lora_E": lora5 if lora5 != "None" else None, | |
"lora_scale_E": lora_scale5, | |
"textual_inversion": embed_list if textual_inversion and self.model.class_name != "StableDiffusionXLPipeline" else [], | |
"syntax_weights": syntax_weights, # "Classic" | |
"sampler": sampler, | |
"xformers_memory_efficient_attention": xformers_memory_efficient_attention, | |
"gui_active": True, | |
"loop_generation": loop_generation, | |
"controlnet_conditioning_scale": float(controlnet_output_scaling_in_unet), | |
"control_guidance_start": float(controlnet_start_threshold), | |
"control_guidance_end": float(controlnet_stop_threshold), | |
"generator_in_cpu": generator_in_cpu, | |
"FreeU": freeu, | |
"adetailer_A": adetailer_active_a, | |
"adetailer_A_params": adetailer_params_A, | |
"adetailer_B": adetailer_active_b, | |
"adetailer_B_params": adetailer_params_B, | |
"leave_progress_bar": leave_progress_bar, | |
"disable_progress_bar": disable_progress_bar, | |
"image_previews": image_previews, | |
"display_images": display_images, | |
"save_generated_images": save_generated_images, | |
"image_storage_location": image_storage_location, | |
"retain_compel_previous_load": retain_compel_previous_load, | |
"retain_detailfix_model_previous_load": retain_detailfix_model_previous_load, | |
"retain_hires_model_previous_load": retain_hires_model_previous_load, | |
"t2i_adapter_preprocessor": t2i_adapter_preprocessor, | |
"t2i_adapter_conditioning_scale": float(t2i_adapter_conditioning_scale), | |
"t2i_adapter_conditioning_factor": float(t2i_adapter_conditioning_factor), | |
"upscaler_model_path": upscaler_model, | |
"upscaler_increases_size": upscaler_increases_size, | |
"esrgan_tile": esrgan_tile, | |
"esrgan_tile_overlap": esrgan_tile_overlap, | |
"hires_steps": hires_steps, | |
"hires_denoising_strength": hires_denoising_strength, | |
"hires_prompt": hires_prompt, | |
"hires_negative_prompt": hires_negative_prompt, | |
"hires_sampler": hires_sampler, | |
"hires_before_adetailer": hires_before_adetailer, | |
"hires_after_adetailer": hires_after_adetailer, | |
"ip_adapter_image": params_ip_img, | |
"ip_adapter_mask": params_ip_msk, | |
"ip_adapter_model": params_ip_model, | |
"ip_adapter_mode": params_ip_mode, | |
"ip_adapter_scale": params_ip_scale, | |
} | |
# print(pipe_params) | |
random_number = random.randint(1, 100) | |
if random_number < 25 and num_images < 3: | |
if (not upscaler_model and | |
steps < 45 and | |
task in ["txt2img", "img2img"] and | |
not adetailer_active_a and | |
not adetailer_active_b): | |
num_images *= 2 | |
pipe_params["num_images"] = num_images | |
gr.Info("Num images x 2 🎉") | |
# Maybe fix lora issue: 'Cannot copy out of meta tensor; no data!'' | |
self.model.pipe.to("cuda:0" if torch.cuda.is_available() else "cpu") | |
info_state = f"PROCESSING " | |
for img, seed, data in self.model(**pipe_params): | |
info_state += ">" | |
if data: | |
info_state = f"COMPLETED. Seeds: {str(seed)}" | |
if vae_msg: | |
info_state = info_state + "<br>" + vae_msg | |
if msg_lora: | |
info_state = info_state + "<br>" + "<br>".join(msg_lora) | |
yield img, info_state | |
sd_gen = GuiSD() | |
with open("app.css", "r") as f: | |
CSS: str = f.read() | |
sdxl_task = [k for k, v in task_stablepy.items() if v in SDXL_TASKS] | |
sd_task = [k for k, v in task_stablepy.items() if v in SD15_TASKS] | |
def update_task_options(model_name, task_name): | |
if model_name in model_list: | |
if "xl" in model_name.lower(): | |
new_choices = sdxl_task | |
else: | |
new_choices = sd_task | |
if task_name not in new_choices: | |
task_name = "txt2img" | |
return gr.update(value=task_name, choices=new_choices) | |
else: | |
return gr.update(value=task_name, choices=task_model_list) | |
with gr.Blocks(css=CSS) as app: | |
gr.Markdown("# 🧩 (Ivan) DiffuseCraft") | |
with gr.Tab("Generation"): | |
with gr.Row(): | |
with gr.Column(scale=2): | |
task_gui = gr.Dropdown( | |
label="Task", | |
choices=sdxl_task, | |
value=task_model_list[0], | |
) | |
model_name_gui = gr.Dropdown( | |
label="Model", | |
choices=model_list, | |
value=model_list[-6] or model_list[0], | |
allow_custom_value=True | |
) | |
prompt_gui = gr.Textbox( | |
lines=5, | |
placeholder="Enter Positive prompt", | |
label="Prompt", | |
value=DEFAULT_POSITIVE_PROMPT | |
) | |
neg_prompt_gui = gr.Textbox( | |
lines=3, | |
placeholder="Enter Neg prompt", | |
label="Negative prompt", | |
value=DEFAULT_NEGATIVE_PROMPT | |
) | |
with gr.Row(equal_height=False): | |
set_params_gui = gr.Button(value="↙️") | |
clear_prompt_gui = gr.Button(value="🗑️") | |
set_random_seed = gr.Button(value="🎲") | |
generate_button = gr.Button( | |
value="GENERATE", | |
variant="primary" | |
) | |
model_name_gui.change( | |
update_task_options, | |
[model_name_gui, task_gui], | |
[task_gui], | |
) | |
load_model_gui = gr.HTML() | |
result_images = gr.Gallery( | |
label="Generated images", | |
show_label=False, | |
elem_id="gallery", | |
columns=[2], | |
rows=[2], | |
object_fit="contain", | |
# height="auto", | |
interactive=False, | |
preview=False, | |
selected_index=50, | |
) | |
actual_task_info = gr.HTML() | |
with gr.Column(scale=1): | |
steps_gui = gr.Slider( | |
minimum=1, | |
maximum=100, | |
step=1, | |
value=43, | |
label="Steps" | |
) | |
cfg_gui = gr.Slider( | |
minimum=0, | |
maximum=30, | |
step=0.5, | |
value=7.5, | |
label="CFG" | |
) | |
sampler_gui = gr.Dropdown( | |
label="Sampler", | |
choices=scheduler_names, | |
value="DPM++ 2M Karras" | |
) | |
img_width_gui = gr.Slider( | |
minimum=64, | |
maximum=4096, | |
step=8, | |
value=1024, | |
label="Img Width" | |
) | |
img_height_gui = gr.Slider( | |
minimum=64, | |
maximum=4096, | |
step=8, | |
value=1024, | |
label="Img Height" | |
) | |
seed_gui = gr.Number( | |
minimum=-1, | |
maximum=9999999999, | |
value=-1, | |
label="Seed" | |
) | |
with gr.Row(): | |
clip_skip_gui = gr.Checkbox(value=True, label="Layer 2 Clip Skip") | |
free_u_gui = gr.Checkbox(value=True, label="FreeU") | |
with gr.Row(equal_height=False): | |
def run_set_params_gui(base_prompt): | |
valid_receptors = { # default values | |
"prompt": gr.update(value=base_prompt), | |
"neg_prompt": gr.update(value=""), | |
"Steps": gr.update(value=30), | |
"width": gr.update(value=1024), | |
"height": gr.update(value=1024), | |
"Seed": gr.update(value=-1), | |
"Sampler": gr.update(value="Euler a"), | |
"scale": gr.update(value=7.5), # cfg | |
"skip": gr.update(value=True), | |
} | |
valid_keys = list(valid_receptors.keys()) | |
parameters = extract_parameters(base_prompt) | |
for key, val in parameters.items(): | |
# print(val) | |
if key in valid_keys: | |
if key == "Sampler": | |
if val not in scheduler_names: | |
continue | |
elif key == "skip": | |
if int(val) >= 2: | |
val = True | |
if key == "prompt": | |
if ">" in val and "<" in val: | |
val = re.sub(r'<[^>]+>', '', val) | |
print("Removed LoRA written in the prompt") | |
if key in ["prompt", "neg_prompt"]: | |
val = val.strip() | |
if key in ["Steps", "width", "height", "Seed"]: | |
val = int(val) | |
if key == "scale": | |
val = float(val) | |
if key == "Seed": | |
continue | |
valid_receptors[key] = gr.update(value=val) | |
# print(val, type(val)) | |
# print(valid_receptors) | |
return [value for value in valid_receptors.values()] | |
set_params_gui.click( | |
run_set_params_gui, [prompt_gui], [ | |
prompt_gui, | |
neg_prompt_gui, | |
steps_gui, | |
img_width_gui, | |
img_height_gui, | |
seed_gui, | |
sampler_gui, | |
cfg_gui, | |
clip_skip_gui, | |
], | |
) | |
def run_clear_prompt_gui(): | |
return gr.update(value=""), gr.update(value="") | |
clear_prompt_gui.click( | |
run_clear_prompt_gui, [], [prompt_gui, neg_prompt_gui] | |
) | |
def run_set_random_seed(): | |
return -1 | |
set_random_seed.click( | |
run_set_random_seed, [], seed_gui | |
) | |
num_images_gui = gr.Slider( | |
minimum=MINIMUM_IMAGE_NUMBER, | |
maximum=MAXIMUM_IMAGE_NUMBER, | |
step=1, | |
value=1, | |
label="Images" | |
) | |
prompt_s_options = [ | |
("Classic format: (word:weight)", "Classic"), | |
("Compel format: (word)weight", "Compel"), | |
("Classic-original format: (word:weight)", "Classic-original"), | |
("Classic-no_norm format: (word:weight)", "Classic-no_norm"), | |
("Classic-ignore", "Classic-ignore"), | |
("None", "None"), | |
] | |
prompt_syntax_gui = gr.Dropdown( | |
label="Prompt Syntax", | |
choices=prompt_s_options, | |
value=prompt_s_options[0][1] | |
) | |
vae_model_gui = gr.Dropdown( | |
label="VAE Model", | |
choices=vae_model_list, | |
value=vae_model_list[0] | |
) | |
with gr.Accordion("Hires fix", open=False, visible=True): | |
upscaler_keys = list(upscaler_dict_gui.keys()) | |
upscaler_model_path_gui = gr.Dropdown( | |
label="Upscaler", | |
choices=upscaler_keys, | |
value=upscaler_keys[0] | |
) | |
upscaler_increases_size_gui = gr.Slider( | |
minimum=1.1, | |
maximum=6., | |
step=0.1, | |
value=1.4, | |
label="Upscale by" | |
) | |
esrgan_tile_gui = gr.Slider( | |
minimum=0, | |
value=100, | |
maximum=500, | |
step=1, | |
label="ESRGAN Tile" | |
) | |
esrgan_tile_overlap_gui = gr.Slider( | |
minimum=1, | |
maximum=200, | |
step=1, | |
value=10, | |
label="ESRGAN Tile Overlap" | |
) | |
hires_steps_gui = gr.Slider( | |
minimum=0, | |
value=30, | |
maximum=100, | |
step=1, | |
label="Hires Steps" | |
) | |
hires_denoising_strength_gui = gr.Slider( | |
minimum=0.1, | |
maximum=1.0, | |
step=0.01, | |
value=0.55, | |
label="Hires Denoising Strength" | |
) | |
hires_sampler_gui = gr.Dropdown( | |
label="Hires Sampler", | |
choices=["Use same sampler"] + scheduler_names[:-1], | |
value="Use same sampler" | |
) | |
hires_prompt_gui = gr.Textbox( | |
label="Hires Prompt", | |
placeholder="Main prompt will be use", | |
lines=3 | |
) | |
hires_negative_prompt_gui = gr.Textbox( | |
label="Hires Negative Prompt", | |
placeholder="Main negative prompt will be use", | |
lines=3 | |
) | |
with gr.Accordion("LoRA", open=False, visible=True): | |
lora1_gui = gr.Dropdown( | |
label="Lora1", | |
choices=lora_model_list | |
) | |
lora_scale_1_gui = gr.Slider( | |
minimum=-2, | |
maximum=2, | |
step=0.01, | |
value=0.33, | |
label="Lora Scale 1" | |
) | |
lora2_gui = gr.Dropdown( | |
label="Lora2", | |
choices=lora_model_list | |
) | |
lora_scale_2_gui = gr.Slider( | |
minimum=-2, | |
maximum=2, | |
step=0.01, | |
value=0.33, | |
label="Lora Scale 2" | |
) | |
lora3_gui = gr.Dropdown( | |
label="Lora3", | |
choices=lora_model_list | |
) | |
lora_scale_3_gui = gr.Slider( | |
minimum=-2, | |
maximum=2, | |
step=0.01, | |
value=0.33, | |
label="Lora Scale 3" | |
) | |
lora4_gui = gr.Dropdown( | |
label="Lora4", | |
choices=lora_model_list | |
) | |
lora_scale_4_gui = gr.Slider( | |
minimum=-2, | |
maximum=2, | |
step=0.01, | |
value=0.33, | |
label="Lora Scale 4" | |
) | |
lora5_gui = gr.Dropdown( | |
label="Lora5", | |
choices=lora_model_list | |
) | |
lora_scale_5_gui = gr.Slider( | |
minimum=-2, | |
maximum=2, | |
step=0.01, | |
value=0.33, | |
label="Lora Scale 5" | |
) | |
with gr.Accordion("From URL", open=False, visible=True): | |
text_lora = gr.Textbox( | |
label="URL", | |
placeholder="http://...my_lora_url.safetensors", | |
lines=1 | |
) | |
button_lora = gr.Button("Get and update lists of LoRAs") | |
button_lora.click( | |
get_my_lora, | |
[text_lora], | |
[lora1_gui, lora2_gui, lora3_gui, lora4_gui, lora5_gui] | |
) | |
with gr.Accordion("IP-Adapter", open=False, visible=True): ############## | |
IP_MODELS = sorted(list(set(IP_ADAPTERS_SD + IP_ADAPTERS_SDXL))) | |
MODE_IP_OPTIONS = [ | |
"original", | |
"style", | |
"layout", | |
"style+layout" | |
] | |
with gr.Accordion("IP-Adapter 1", open=False, visible=True): | |
image_ip1 = gr.Image(label="IP Image", type="filepath") | |
mask_ip1 = gr.Image(label="IP Mask", type="filepath") | |
model_ip1 = gr.Dropdown(value="plus_face", label="Model", choices=IP_MODELS) | |
mode_ip1 = gr.Dropdown(value="original", label="Mode", choices=MODE_IP_OPTIONS) | |
scale_ip1 = gr.Slider(minimum=0., maximum=2., step=0.01, value=0.7, label="Scale") | |
with gr.Accordion("IP-Adapter 2", open=False, visible=True): | |
image_ip2 = gr.Image(label="IP Image", type="filepath") | |
mask_ip2 = gr.Image(label="IP Mask (optional)", type="filepath") | |
model_ip2 = gr.Dropdown(value="base", label="Model", choices=IP_MODELS) | |
mode_ip2 = gr.Dropdown(value="style", label="Mode", choices=MODE_IP_OPTIONS) | |
scale_ip2 = gr.Slider(minimum=0., maximum=2., step=0.01, value=0.7, label="Scale") | |
with gr.Accordion("ControlNet / Img2img / Inpaint", open=False, visible=True): | |
image_control = gr.Image( | |
label="Image ControlNet/Inpaint/Img2img", | |
type="filepath" | |
) | |
image_mask_gui = gr.Image( | |
label="Image Mask", | |
type="filepath" | |
) | |
strength_gui = gr.Slider( | |
minimum=0.01, | |
maximum=1.0, | |
step=0.01, | |
value=0.55, | |
label="Strength", | |
info="This option adjusts the level of changes for img2img and inpainting." | |
) | |
image_resolution_gui = gr.Slider( | |
minimum=64, | |
maximum=2048, | |
step=64, value=1024, | |
label="Image Resolution" | |
) | |
preprocessor_name_gui = gr.Dropdown( | |
label="Preprocessor Name", | |
choices=preprocessor_controlnet["canny"] | |
) | |
def change_preprocessor_choices(task): | |
task = task_stablepy[task] | |
if task in preprocessor_controlnet.keys(): | |
choices_task = preprocessor_controlnet[task] | |
else: | |
choices_task = preprocessor_controlnet["canny"] | |
return gr.update(choices=choices_task, value=choices_task[0]) | |
task_gui.change( | |
change_preprocessor_choices, | |
[task_gui], | |
[preprocessor_name_gui], | |
) | |
preprocess_resolution_gui = gr.Slider( | |
minimum=64, | |
maximum=2048, | |
step=64, | |
value=512, | |
label="Preprocess Resolution" | |
) | |
low_threshold_gui = gr.Slider( | |
minimum=1, | |
maximum=255, | |
step=1, | |
value=100, | |
label="Canny low threshold" | |
) | |
high_threshold_gui = gr.Slider( | |
minimum=1, | |
maximum=255, | |
step=1, | |
value=200, | |
label="Canny high threshold" | |
) | |
value_threshold_gui = gr.Slider( | |
minimum=1, | |
maximum=2.0, | |
step=0.01, value=0.1, | |
label="Hough value threshold (MLSD)" | |
) | |
distance_threshold_gui = gr.Slider( | |
minimum=1, | |
maximum=20.0, | |
step=0.01, | |
value=0.1, | |
label="Hough distance threshold (MLSD)" | |
) | |
control_net_output_scaling_gui = gr.Slider( | |
minimum=0, | |
maximum=5.0, | |
step=0.1, | |
value=1, | |
label="ControlNet Output Scaling in UNet" | |
) | |
control_net_start_threshold_gui = gr.Slider( | |
minimum=0, | |
maximum=1, | |
step=0.01, | |
value=0, | |
label="ControlNet Start Threshold (%)" | |
) | |
control_net_stop_threshold_gui = gr.Slider( | |
minimum=0, | |
maximum=1, | |
step=0.01, | |
value=1, | |
label="ControlNet Stop Threshold (%)" | |
) | |
with gr.Accordion("T2I adapter", open=False, visible=True): | |
t2i_adapter_preprocessor_gui = gr.Checkbox( | |
value=True, | |
label="T2i Adapter Preprocessor" | |
) | |
adapter_conditioning_scale_gui = gr.Slider( | |
minimum=0, | |
maximum=5., | |
step=0.1, | |
value=1, | |
label="Adapter Conditioning Scale" | |
) | |
adapter_conditioning_factor_gui = gr.Slider( | |
minimum=0, | |
maximum=1., | |
step=0.01, | |
value=0.55, | |
label="Adapter Conditioning Factor (%)" | |
) | |
with gr.Accordion("Styles", open=False, visible=True): | |
try: | |
style_names_found = sd_gen.model.STYLE_NAMES | |
except: | |
style_names_found = STYLE_NAMES | |
style_prompt_gui = gr.Dropdown( | |
style_names_found, | |
multiselect=True, | |
value=None, | |
label="Style Prompt", | |
interactive=True, | |
) | |
style_json_gui = gr.File(label="Style JSON File") | |
style_button = gr.Button("Load styles") | |
def load_json_style_file(json): | |
if not sd_gen.model: | |
gr.Info("First load the model") | |
return gr.update(value=None, choices=STYLE_NAMES) | |
sd_gen.model.load_style_file(json) | |
gr.Info(f"{len(sd_gen.model.STYLE_NAMES)} styles loaded") | |
return gr.update(value=None, choices=sd_gen.model.STYLE_NAMES) | |
style_button.click( | |
load_json_style_file, | |
[style_json_gui], | |
[style_prompt_gui] | |
) | |
with gr.Accordion("Textual inversion", open=False, visible=False): | |
active_textual_inversion_gui = gr.Checkbox( | |
value=False, | |
label="Active Textual Inversion in prompt" | |
) | |
with gr.Accordion("Detailfix", open=False, visible=True): | |
# Adetailer Inpaint Only | |
adetailer_inpaint_only_gui = gr.Checkbox(label="Inpaint only", value=True) | |
# Adetailer Verbose | |
adetailer_verbose_gui = gr.Checkbox(label="Verbose", value=False) | |
# Adetailer Sampler | |
adetailer_sampler_options = ["Use same sampler"] + scheduler_names[:-1] | |
adetailer_sampler_gui = gr.Dropdown( | |
label="Adetailer sampler:", | |
choices=adetailer_sampler_options, | |
value="Use same sampler" | |
) | |
with gr.Accordion("Detailfix A", open=False, visible=True): | |
# Adetailer A | |
adetailer_active_a_gui = gr.Checkbox( | |
label="Enable Adetailer A", | |
value=False | |
) | |
prompt_ad_a_gui = gr.Textbox( | |
label="Main prompt", | |
placeholder="Main prompt will be use", | |
lines=3 | |
) | |
negative_prompt_ad_a_gui = gr.Textbox( | |
label="Negative prompt", | |
placeholder="Main negative prompt will be use", | |
lines=3 | |
) | |
strength_ad_a_gui = gr.Number( | |
label="Strength:", | |
value=0.35, step=0.01, | |
minimum=0.01, | |
maximum=1.0 | |
) | |
face_detector_ad_a_gui = gr.Checkbox( | |
label="Face detector", | |
value=True | |
) | |
person_detector_ad_a_gui = gr.Checkbox( | |
label="Person detector", | |
value=True | |
) | |
hand_detector_ad_a_gui = gr.Checkbox( | |
label="Hand detector", | |
value=False | |
) | |
mask_dilation_a_gui = gr.Number( | |
label="Mask dilation:", | |
value=4, | |
minimum=1 | |
) | |
mask_blur_a_gui = gr.Number( | |
label="Mask blur:", | |
value=4, | |
minimum=1 | |
) | |
mask_padding_a_gui = gr.Number( | |
label="Mask padding:", | |
value=32, | |
minimum=1 | |
) | |
with gr.Accordion("Detailfix B", open=False, visible=True): | |
# Adetailer B | |
adetailer_active_b_gui = gr.Checkbox(label="Enable Adetailer B", value=False) | |
prompt_ad_b_gui = gr.Textbox( | |
label="Main prompt", | |
placeholder="Main prompt will be use", | |
lines=3 | |
) | |
negative_prompt_ad_b_gui = gr.Textbox( | |
label="Negative prompt", | |
placeholder="Main negative prompt will be use", | |
lines=3 | |
) | |
strength_ad_b_gui = gr.Number( | |
label="Strength:", | |
value=0.35, | |
step=0.01, | |
minimum=0.01, | |
maximum=1.0 | |
) | |
face_detector_ad_b_gui = gr.Checkbox(label="Face detector", value=True) | |
person_detector_ad_b_gui = gr.Checkbox(label="Person detector", value=True) | |
hand_detector_ad_b_gui = gr.Checkbox(label="Hand detector", value=False) | |
mask_dilation_b_gui = gr.Number(label="Mask dilation:", value=4, minimum=1) | |
mask_blur_b_gui = gr.Number(label="Mask blur:", value=4, minimum=1) | |
mask_padding_b_gui = gr.Number(label="Mask padding:", value=32, minimum=1) | |
with gr.Accordion( | |
"Other settings", | |
open=False, | |
visible=True): | |
image_previews_gui = gr.Checkbox( | |
value=True, | |
label="Image Previews" | |
) | |
hires_before_adetailer_gui = gr.Checkbox( | |
value=False, | |
label="Hires Before Adetailer" | |
) | |
hires_after_adetailer_gui = gr.Checkbox( | |
value=True, | |
label="Hires After Adetailer" | |
) | |
generator_in_cpu_gui = gr.Checkbox( | |
value=False, | |
label="Generator in CPU" | |
) | |
with gr.Accordion("More settings", open=False, visible=False): | |
loop_generation_gui = gr.Slider( | |
minimum=1, | |
value=1, | |
label="Loop Generation" | |
) | |
retain_task_cache_gui = gr.Checkbox( | |
value=False, | |
label="Retain task model in cache" | |
) | |
leave_progress_bar_gui = gr.Checkbox( | |
value=True, | |
label="Leave Progress Bar" | |
) | |
disable_progress_bar_gui = gr.Checkbox( | |
value=False, | |
label="Disable Progress Bar" | |
) | |
display_images_gui = gr.Checkbox( | |
value=True, | |
label="Display Images" | |
) | |
save_generated_images_gui = gr.Checkbox( | |
value=False, | |
label="Save Generated Images" | |
) | |
image_storage_location_gui = gr.Textbox( | |
value="./images", | |
label="Image Storage Location" | |
) | |
retain_compel_previous_load_gui = gr.Checkbox( | |
value=False, | |
label="Retain Compel Previous Load" | |
) | |
retain_detailfix_model_previous_load_gui = gr.Checkbox( | |
value=False, | |
label="Retain Detailfix Model Previous Load" | |
) | |
retain_hires_model_previous_load_gui = gr.Checkbox( | |
value=False, | |
label="Retain Hires Model Previous Load" | |
) | |
xformers_memory_efficient_attention_gui = gr.Checkbox( | |
value=False, | |
label="Xformers Memory Efficient Attention" | |
) | |
# example and Help Section | |
with gr.Accordion("Examples and help", open=False, visible=True): | |
gr.Markdown( | |
"""### Help: | |
- The current space runs on a ZERO GPU which is assigned for approximately 60 seconds; Therefore, \ | |
if you submit expensive tasks, the operation may be canceled upon reaching the \ | |
maximum allowed time with 'GPU TASK ABORTED'. | |
- Distorted or strange images often result from high prompt weights, \ | |
so it's best to use low weights and scales, and consider using Classic variants like 'Classic-original'. | |
- For better results with Pony Diffusion, \ | |
try using sampler DPM++ 1s or DPM2 with Compel or Classic prompt weights. | |
""" | |
) | |
gr.Markdown( | |
"""### The following examples perform specific tasks: | |
1. Generation with SDXL and upscale | |
2. Generation with SDXL | |
3. ControlNet Canny SDXL | |
4. Optical pattern (Optical illusion) SDXL | |
5. Convert an image to a coloring drawing | |
6. ControlNet OpenPose SD 1.5 | |
- Different tasks can be performed, such as img2img or using the IP adapter, \ | |
to preserve a person's appearance or a specific style based on an image. | |
""" | |
) | |
gr.Examples( | |
examples=example_prompts, | |
fn=sd_gen.generate_pipeline, | |
inputs=[ | |
prompt_gui, | |
neg_prompt_gui, | |
num_images_gui, | |
steps_gui, | |
cfg_gui, | |
clip_skip_gui, | |
seed_gui, | |
lora1_gui, | |
lora_scale_1_gui, | |
lora2_gui, | |
lora_scale_2_gui, | |
lora3_gui, | |
lora_scale_3_gui, | |
lora4_gui, | |
lora_scale_4_gui, | |
lora5_gui, | |
lora_scale_5_gui, | |
sampler_gui, | |
img_height_gui, | |
img_width_gui, | |
model_name_gui, | |
vae_model_gui, | |
task_gui, | |
image_control, | |
preprocessor_name_gui, | |
preprocess_resolution_gui, | |
image_resolution_gui, | |
style_prompt_gui, | |
style_json_gui, | |
image_mask_gui, | |
strength_gui, | |
low_threshold_gui, | |
high_threshold_gui, | |
value_threshold_gui, | |
distance_threshold_gui, | |
control_net_output_scaling_gui, | |
control_net_start_threshold_gui, | |
control_net_stop_threshold_gui, | |
active_textual_inversion_gui, | |
prompt_syntax_gui, | |
upscaler_model_path_gui, | |
], | |
outputs=[result_images], | |
cache_examples=False, | |
) | |
with gr.Tab("Inpaint mask maker", render=True): | |
def create_mask_now(img, invert): | |
import numpy as np | |
import time | |
time.sleep(0.5) | |
transparent_image = img["layers"][0] | |
# Extract the alpha channel | |
alpha_channel = np.array(transparent_image)[:, :, 3] | |
# Create a binary mask by thresholding the alpha channel | |
binary_mask = alpha_channel > 1 | |
if invert: | |
print("Invert") | |
# Invert the binary mask so that the drawn shape is white and the rest is black | |
binary_mask = np.invert(binary_mask) | |
# Convert the binary mask to a 3-channel RGB mask | |
rgb_mask = np.stack((binary_mask,) * 3, axis=-1) | |
# Convert the mask to uint8 | |
rgb_mask = rgb_mask.astype(np.uint8) * 255 | |
return img["background"], rgb_mask | |
with gr.Row(): | |
with gr.Column(scale=2): | |
# image_base = gr.ImageEditor(label="Base image", show_label=True, brush=gr.Brush(colors=["#000000"])) | |
image_base = gr.ImageEditor( | |
sources=[ | |
"upload", | |
"clipboard" | |
], | |
# crop_size="1:1", | |
# enable crop (or disable it) | |
# transforms=["crop"], | |
brush=gr.Brush( | |
default_size="16", # or leave it as 'auto' | |
color_mode="fixed", # 'fixed' hides the user swatches and colorpicker, 'defaults' shows it | |
# default_color="black", # html names are supported | |
colors=[ | |
"rgba(0, 0, 0, 1)", # rgb(a) | |
"rgba(0, 0, 0, 0.1)", | |
"rgba(255, 255, 255, 0.1)", | |
# "hsl(360, 120, 120)" # in fact any valid colorstring | |
] | |
), | |
eraser=gr.Eraser(default_size="16") | |
) | |
invert_mask = gr.Checkbox(value=False, label="Invert mask") | |
btn = gr.Button("Create mask") | |
with gr.Column(scale=1): | |
img_source = gr.Image(interactive=False) | |
img_result = gr.Image( | |
label="Mask image", | |
show_label=True, | |
interactive=False | |
) | |
btn_send = gr.Button("Send to the first tab") | |
btn.click( | |
create_mask_now, | |
[image_base, invert_mask], | |
[img_source, img_result] | |
) | |
def send_img(img_source, img_result): | |
return img_source, img_result | |
btn_send.click( | |
send_img, | |
[img_source, img_result], | |
[image_control, image_mask_gui] | |
) | |
generate_button.click( | |
fn=sd_gen.load_new_model, | |
inputs=[ | |
model_name_gui, | |
vae_model_gui, | |
task_gui | |
], | |
outputs=[load_model_gui], | |
queue=True, | |
show_progress="minimal", | |
).success( | |
fn=sd_gen.generate_pipeline, | |
inputs=[ | |
prompt_gui, | |
neg_prompt_gui, | |
num_images_gui, | |
steps_gui, | |
cfg_gui, | |
clip_skip_gui, | |
seed_gui, | |
lora1_gui, | |
lora_scale_1_gui, | |
lora2_gui, | |
lora_scale_2_gui, | |
lora3_gui, | |
lora_scale_3_gui, | |
lora4_gui, | |
lora_scale_4_gui, | |
lora5_gui, | |
lora_scale_5_gui, | |
sampler_gui, | |
img_height_gui, | |
img_width_gui, | |
model_name_gui, | |
vae_model_gui, | |
task_gui, | |
image_control, | |
preprocessor_name_gui, | |
preprocess_resolution_gui, | |
image_resolution_gui, | |
style_prompt_gui, | |
style_json_gui, | |
image_mask_gui, | |
strength_gui, | |
low_threshold_gui, | |
high_threshold_gui, | |
value_threshold_gui, | |
distance_threshold_gui, | |
control_net_output_scaling_gui, | |
control_net_start_threshold_gui, | |
control_net_stop_threshold_gui, | |
active_textual_inversion_gui, | |
prompt_syntax_gui, | |
upscaler_model_path_gui, | |
upscaler_increases_size_gui, | |
esrgan_tile_gui, | |
esrgan_tile_overlap_gui, | |
hires_steps_gui, | |
hires_denoising_strength_gui, | |
hires_sampler_gui, | |
hires_prompt_gui, | |
hires_negative_prompt_gui, | |
hires_before_adetailer_gui, | |
hires_after_adetailer_gui, | |
loop_generation_gui, | |
leave_progress_bar_gui, | |
disable_progress_bar_gui, | |
image_previews_gui, | |
display_images_gui, | |
save_generated_images_gui, | |
image_storage_location_gui, | |
retain_compel_previous_load_gui, | |
retain_detailfix_model_previous_load_gui, | |
retain_hires_model_previous_load_gui, | |
t2i_adapter_preprocessor_gui, | |
adapter_conditioning_scale_gui, | |
adapter_conditioning_factor_gui, | |
xformers_memory_efficient_attention_gui, | |
free_u_gui, | |
generator_in_cpu_gui, | |
adetailer_inpaint_only_gui, | |
adetailer_verbose_gui, | |
adetailer_sampler_gui, | |
adetailer_active_a_gui, | |
prompt_ad_a_gui, | |
negative_prompt_ad_a_gui, | |
strength_ad_a_gui, | |
face_detector_ad_a_gui, | |
person_detector_ad_a_gui, | |
hand_detector_ad_a_gui, | |
mask_dilation_a_gui, | |
mask_blur_a_gui, | |
mask_padding_a_gui, | |
adetailer_active_b_gui, | |
prompt_ad_b_gui, | |
negative_prompt_ad_b_gui, | |
strength_ad_b_gui, | |
face_detector_ad_b_gui, | |
person_detector_ad_b_gui, | |
hand_detector_ad_b_gui, | |
mask_dilation_b_gui, | |
mask_blur_b_gui, | |
mask_padding_b_gui, | |
retain_task_cache_gui, | |
image_ip1, | |
mask_ip1, | |
model_ip1, | |
mode_ip1, | |
scale_ip1, | |
image_ip2, | |
mask_ip2, | |
model_ip2, | |
mode_ip2, | |
scale_ip2, | |
], | |
outputs=[result_images, actual_task_info], | |
queue=True, | |
show_progress="minimal", | |
) | |
app.queue() | |
app.launch( | |
show_error=True, | |
debug=True, | |
) |