Spaces:
Running
on
Zero
Running
on
Zero
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,126 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import spaces
|
3 |
+
from transformers import Qwen2VLForConditionalGeneration, AutoProcessor
|
4 |
+
from qwen_vl_utils import process_vision_info
|
5 |
+
import torch
|
6 |
+
from PIL import Image
|
7 |
+
import subprocess
|
8 |
+
from datetime import datetime
|
9 |
+
import numpy as np
|
10 |
+
import os
|
11 |
+
|
12 |
+
|
13 |
+
# subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
|
14 |
+
|
15 |
+
# models = {
|
16 |
+
# "Qwen/Qwen2-VL-7B-Instruct": AutoModelForCausalLM.from_pretrained("Qwen/Qwen2-VL-7B-Instruct", trust_remote_code=True, torch_dtype="auto", _attn_implementation="flash_attention_2").cuda().eval()
|
17 |
+
|
18 |
+
# }
|
19 |
+
def array_to_image_path(image_array):
|
20 |
+
if image_array is None:
|
21 |
+
raise ValueError("No image provided. Please upload an image before submitting.")
|
22 |
+
# Convert numpy array to PIL Image
|
23 |
+
img = Image.fromarray(np.uint8(image_array))
|
24 |
+
|
25 |
+
# Generate a unique filename using timestamp
|
26 |
+
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
27 |
+
filename = f"image_{timestamp}.png"
|
28 |
+
|
29 |
+
# Save the image
|
30 |
+
img.save(filename)
|
31 |
+
|
32 |
+
# Get the full path of the saved image
|
33 |
+
full_path = os.path.abspath(filename)
|
34 |
+
|
35 |
+
return full_path
|
36 |
+
|
37 |
+
models = {
|
38 |
+
"Qwen/Qwen2-VL-7B-Instruct": Qwen2VLForConditionalGeneration.from_pretrained("Qwen/Qwen2-VL-7B-Instruct", trust_remote_code=True, torch_dtype="auto").cuda().eval()
|
39 |
+
|
40 |
+
}
|
41 |
+
|
42 |
+
processors = {
|
43 |
+
"Qwen/Qwen2-VL-7B-Instruct": AutoProcessor.from_pretrained("Qwen/Qwen2-VL-7B-Instruct", trust_remote_code=True)
|
44 |
+
}
|
45 |
+
|
46 |
+
DESCRIPTION = "[Qwen2-VL-7B Demo](https://huggingface.co/Qwen/Qwen2-VL-7B-Instruct)"
|
47 |
+
|
48 |
+
kwargs = {}
|
49 |
+
kwargs['torch_dtype'] = torch.bfloat16
|
50 |
+
|
51 |
+
user_prompt = '<|user|>\n'
|
52 |
+
assistant_prompt = '<|assistant|>\n'
|
53 |
+
prompt_suffix = "<|end|>\n"
|
54 |
+
|
55 |
+
@spaces.GPU
|
56 |
+
def run_example(image, text_input=None, model_id="Qwen/Qwen2-VL-7B-Instruct"):
|
57 |
+
image_path = array_to_image_path(image)
|
58 |
+
|
59 |
+
print(image_path)
|
60 |
+
model = models[model_id]
|
61 |
+
processor = processors[model_id]
|
62 |
+
|
63 |
+
prompt = f"{user_prompt}<|image_1|>\n{text_input}{prompt_suffix}{assistant_prompt}"
|
64 |
+
image = Image.fromarray(image).convert("RGB")
|
65 |
+
messages = [
|
66 |
+
{
|
67 |
+
"role": "user",
|
68 |
+
"content": [
|
69 |
+
{
|
70 |
+
"type": "image",
|
71 |
+
"image": image_path,
|
72 |
+
},
|
73 |
+
{"type": "text", "text": text_input},
|
74 |
+
],
|
75 |
+
}
|
76 |
+
]
|
77 |
+
|
78 |
+
# Preparation for inference
|
79 |
+
text = processor.apply_chat_template(
|
80 |
+
messages, tokenize=False, add_generation_prompt=True
|
81 |
+
)
|
82 |
+
image_inputs, video_inputs = process_vision_info(messages)
|
83 |
+
inputs = processor(
|
84 |
+
text=[text],
|
85 |
+
images=image_inputs,
|
86 |
+
videos=video_inputs,
|
87 |
+
padding=True,
|
88 |
+
return_tensors="pt",
|
89 |
+
)
|
90 |
+
inputs = inputs.to("cuda")
|
91 |
+
|
92 |
+
# Inference: Generation of the output
|
93 |
+
generated_ids = model.generate(**inputs, max_new_tokens=1024)
|
94 |
+
generated_ids_trimmed = [
|
95 |
+
out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
|
96 |
+
]
|
97 |
+
output_text = processor.batch_decode(
|
98 |
+
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
|
99 |
+
)
|
100 |
+
|
101 |
+
return output_text[0]
|
102 |
+
|
103 |
+
css = """
|
104 |
+
#output {
|
105 |
+
height: 500px;
|
106 |
+
overflow: auto;
|
107 |
+
border: 1px solid #ccc;
|
108 |
+
}
|
109 |
+
"""
|
110 |
+
|
111 |
+
with gr.Blocks(css=css) as demo:
|
112 |
+
gr.Markdown(DESCRIPTION)
|
113 |
+
with gr.Tab(label="Qwen2-VL-7B Input"):
|
114 |
+
with gr.Row():
|
115 |
+
with gr.Column():
|
116 |
+
input_img = gr.Image(label="Input Picture")
|
117 |
+
model_selector = gr.Dropdown(choices=list(models.keys()), label="Model", value="Qwen/Qwen2-VL-7B-Instruct")
|
118 |
+
text_input = gr.Textbox(label="Question")
|
119 |
+
submit_btn = gr.Button(value="Submit")
|
120 |
+
with gr.Column():
|
121 |
+
output_text = gr.Textbox(label="Output Text")
|
122 |
+
|
123 |
+
submit_btn.click(run_example, [input_img, text_input, model_selector], [output_text])
|
124 |
+
|
125 |
+
demo.queue(api_open=False)
|
126 |
+
demo.launch(debug=True)
|