samidh commited on
Commit
ed150f6
·
verified ·
1 Parent(s): 689af11

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +18 -13
app.py CHANGED
@@ -3,21 +3,26 @@ import os
3
 
4
  import torch
5
  from peft import PeftConfig, PeftModel
6
- from transformers import AutoModelForCausalLM, AutoTokenizer
7
 
8
  device = 'cuda' if torch.cuda.is_available() else 'cpu'
9
 
10
- base_model_name = "google/gemma-2b"
11
- #adapter_model_name = "samidh/cope-g2b-2c-hs-skr-s1.5.9-sx-sk-s5.d25"
12
- #adapter_model_name = "samidh/cope-g2b-2c-hs-skr-s1.5.9-sx-sk-s1.5.l1e4-e10-d25"
13
- #adapter_model_name = "samidh/cope-g2b-2c-hs-s1.f5.9.l5e5-e10-d25-r8"
14
- #adapter_model_name = "samidh/cope-g2b-2c-hs.s1.5.9-sx.s1.5.9o-hr.s5-sh.s5.l1e4-e10-d25-r8"
15
- #adapter_model_name = "samidh/cope-ap-g2b-2c-hs.s1.5.9-sx.s1.5.9o-vl.s1.5.9-hr.s5-sh.s5.l1e4-e5-d25-r8"
16
- #adapter_model_name = "samidh/cope-g2b-2c-hs.s1.5pcf.9.l5e5-e10-d25-r8"
17
- #adapter_model_name = "samidh/cope-g7bq-2c-hs.s1.5fpc.9-sx.s1.5.9o-VL.s1.5.9-HR.s5-SH.s5-l1e4-e5-d25-r8"
18
- adapter_model_name = "samidh/cope-g2b-2c-hs.s1.5fpc.9-sx.s1.5.9o-vl.s1.5.9-hr.s5-sh.s5.l5e5-e3-d25-r8"
19
-
20
- model = AutoModelForCausalLM.from_pretrained(base_model_name, token=os.environ['HF_TOKEN'])
 
 
 
 
 
21
  model = PeftModel.from_pretrained(model, adapter_model_name, token=os.environ['HF_TOKEN'])
22
  model.merge_and_unload()
23
 
@@ -97,7 +102,7 @@ def predict(content, policy):
97
  input_text = PROMPT.format(policy=policy, content=content)
98
  input_ids = tokenizer.encode(input_text, return_tensors="pt").to(model.device)
99
 
100
- with torch.no_grad():
101
  outputs = model(input_ids)
102
  logits = outputs.logits[:, -1, :] # Get logits for the last token
103
  predicted_token_id = torch.argmax(logits, dim=-1).item()
 
3
 
4
  import torch
5
  from peft import PeftConfig, PeftModel
6
+ from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
7
 
8
  device = 'cuda' if torch.cuda.is_available() else 'cpu'
9
 
10
+ #base_model_name = "google/gemma-2b"
11
+ base_model_name = "google/gemma-7b"
12
+ #adapter_model_name = "samidh/cope-g2b-2c-hs.s1.5fpc.9-sx.s1.5.9o-vl.s1.5.9-hr.s5-sh.s5.l5e5-e3-d25-r8"
13
+ adapter_model_name = "samidh/cope-g7bq-2c-hs.s1.5fpc.9-sx.s1.5.9o-VL.s1.5.9-HR.s5-SH.s5-l5e5-e3-d25-r8"
14
+
15
+ bnb_config = BitsAndBytesConfig(
16
+ load_in_4bit=True,
17
+ #bnb_4bit_quant_type="nf4",
18
+ #bnb_4bit_compute_dtype=torch.bfloat16,
19
+ #bnb_4bit_use_double_quant=True
20
+ )
21
+
22
+ model = AutoModelForCausalLM.from_pretrained(base_model_name,
23
+ token=os.environ['HF_TOKEN'],
24
+ quantization_config=bnb_config,
25
+ device_map="auto")
26
  model = PeftModel.from_pretrained(model, adapter_model_name, token=os.environ['HF_TOKEN'])
27
  model.merge_and_unload()
28
 
 
102
  input_text = PROMPT.format(policy=policy, content=content)
103
  input_ids = tokenizer.encode(input_text, return_tensors="pt").to(model.device)
104
 
105
+ with torch.inference_mode():
106
  outputs = model(input_ids)
107
  logits = outputs.logits[:, -1, :] # Get logits for the last token
108
  predicted_token_id = torch.argmax(logits, dim=-1).item()