Spaces:
Runtime error
Runtime error
Alex Cabrera
commited on
Commit
β’
4a5b13d
1
Parent(s):
802dbc1
more metrics
Browse files- .zeno_cache/POSTDISTILLbert_scorehuman.pickle +1 -1
- .zeno_cache/{OUTPUThuman-with-embeddings.pickle β POSTDISTILLbleuhuman.pickle} +2 -2
- .zeno_cache/{POSTDISTILLbert_scorehuman-with-embeddings.pickle β POSTDISTILLchrfhuman.pickle} +2 -2
- .zeno_cache/{EMBEDDINGhuman-with-embeddings.pickle β POSTDISTILLlength_ratiohuman.pickle} +2 -2
- model.py +69 -7
.zeno_cache/POSTDISTILLbert_scorehuman.pickle
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 275525
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1e7695f9c6114d019cda0942d59536b9666acb7c77b0ab76064ac3413844d401
|
3 |
size 275525
|
.zeno_cache/{OUTPUThuman-with-embeddings.pickle β POSTDISTILLbleuhuman.pickle}
RENAMED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a452a66042652393d61b1c46a83395d98d543498fb6e5825d5c5c52df57da4f3
|
3 |
+
size 275519
|
.zeno_cache/{POSTDISTILLbert_scorehuman-with-embeddings.pickle β POSTDISTILLchrfhuman.pickle}
RENAMED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:014caba05b6980c1c71d9602952474737446c8ffee54f49f12bd4bd9b9987375
|
3 |
+
size 275519
|
.zeno_cache/{EMBEDDINGhuman-with-embeddings.pickle β POSTDISTILLlength_ratiohuman.pickle}
RENAMED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1205b1c225a4fa82c63138540230f1f03bb0f19292dd98fc22284512d437ee37
|
3 |
+
size 275527
|
model.py
CHANGED
@@ -3,7 +3,7 @@ from inspiredco.critique import Critique
|
|
3 |
import os
|
4 |
from sentence_transformers import SentenceTransformer
|
5 |
|
6 |
-
|
7 |
|
8 |
|
9 |
@model
|
@@ -19,15 +19,62 @@ def pred_fns(name):
|
|
19 |
|
20 |
@distill
|
21 |
def bert_score(df, ops):
|
22 |
-
eval_dict = df[["source", ops.output_column, "
|
23 |
for d in eval_dict:
|
24 |
-
d["references"] = [d.pop("
|
25 |
d["target"] = d.pop(ops.output_column)
|
26 |
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
|
32 |
return [round(r["value"], 6) for r in result["examples"]]
|
33 |
|
@@ -37,6 +84,21 @@ def avg_bert_score(df, ops: ZenoOptions):
|
|
37 |
return df[ops.distill_columns["bert_score"]].mean()
|
38 |
|
39 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
@distill
|
41 |
def length(df, ops):
|
42 |
return df[ops.data_column].str.len()
|
|
|
3 |
import os
|
4 |
from sentence_transformers import SentenceTransformer
|
5 |
|
6 |
+
client = Critique(api_key=os.environ["INSPIREDCO_API_KEY"])
|
7 |
|
8 |
|
9 |
@model
|
|
|
19 |
|
20 |
@distill
|
21 |
def bert_score(df, ops):
|
22 |
+
eval_dict = df[["source", ops.output_column, "reference"]].to_dict("records")
|
23 |
for d in eval_dict:
|
24 |
+
d["references"] = [d.pop("reference")]
|
25 |
d["target"] = d.pop(ops.output_column)
|
26 |
|
27 |
+
result = client.evaluate(
|
28 |
+
metric="bert_score", config={"model": "bert-base-uncased"}, dataset=eval_dict
|
29 |
+
)
|
30 |
+
|
31 |
+
return [round(r["value"], 6) for r in result["examples"]]
|
32 |
+
|
33 |
+
|
34 |
+
@distill
|
35 |
+
def bleu(df, ops):
|
36 |
+
eval_dict = df[[ops.output_column, "reference"]].to_dict("records")
|
37 |
+
for d in eval_dict:
|
38 |
+
d["references"] = [d.pop("reference")]
|
39 |
+
d["target"] = d.pop(ops.output_column)
|
40 |
+
|
41 |
+
result = client.evaluate(
|
42 |
+
metric="bleu",
|
43 |
+
config={"smooth_method": "add_k", "smooth-value": 1.0},
|
44 |
+
dataset=eval_dict,
|
45 |
+
)
|
46 |
+
|
47 |
+
return [round(r["value"], 6) for r in result["examples"]]
|
48 |
+
|
49 |
+
|
50 |
+
@distill
|
51 |
+
def chrf(df, ops):
|
52 |
+
eval_dict = df[[ops.output_column, "reference"]].to_dict("records")
|
53 |
+
for d in eval_dict:
|
54 |
+
d["references"] = [d.pop("reference")]
|
55 |
+
d["target"] = d.pop(ops.output_column)
|
56 |
+
|
57 |
+
result = client.evaluate(
|
58 |
+
metric="chrf",
|
59 |
+
config={},
|
60 |
+
dataset=eval_dict,
|
61 |
+
)
|
62 |
+
|
63 |
+
return [round(r["value"], 6) for r in result["examples"]]
|
64 |
+
|
65 |
+
|
66 |
+
@distill
|
67 |
+
def length_ratio(df, ops):
|
68 |
+
eval_dict = df[[ops.output_column, "reference"]].to_dict("records")
|
69 |
+
for d in eval_dict:
|
70 |
+
d["references"] = [d.pop("reference")]
|
71 |
+
d["target"] = d.pop(ops.output_column)
|
72 |
+
|
73 |
+
result = client.evaluate(
|
74 |
+
metric="length_ratio",
|
75 |
+
config={},
|
76 |
+
dataset=eval_dict,
|
77 |
+
)
|
78 |
|
79 |
return [round(r["value"], 6) for r in result["examples"]]
|
80 |
|
|
|
84 |
return df[ops.distill_columns["bert_score"]].mean()
|
85 |
|
86 |
|
87 |
+
@metric
|
88 |
+
def avg_bleu(df, ops: ZenoOptions):
|
89 |
+
return df[ops.distill_columns["bleu"]].mean()
|
90 |
+
|
91 |
+
|
92 |
+
@metric
|
93 |
+
def avg_chrf(df, ops: ZenoOptions):
|
94 |
+
return df[ops.distill_columns["chrf"]].mean()
|
95 |
+
|
96 |
+
|
97 |
+
@metric
|
98 |
+
def avg_length_ratio(df, ops: ZenoOptions):
|
99 |
+
return df[ops.distill_columns["length_ratio"]].mean()
|
100 |
+
|
101 |
+
|
102 |
@distill
|
103 |
def length(df, ops):
|
104 |
return df[ops.data_column].str.len()
|