Spaces:
Sleeping
Sleeping
add app.py
Browse files
app.py
CHANGED
@@ -1,3 +1,23 @@
|
|
|
|
1 |
import gradio as gr
|
2 |
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer
|
2 |
import gradio as gr
|
3 |
|
4 |
+
# First define a prediction function that takes in a text prompt and returns the text completion
|
5 |
+
|
6 |
+
model = pipeline("text-generation", model="zenai-org/SmolLM-prompt-generation")
|
7 |
+
|
8 |
+
def predict(prompt):
|
9 |
+
out = model(
|
10 |
+
prompt,
|
11 |
+
max_length=77, # Max length of the generated sequence
|
12 |
+
min_length=10, # Minimum length of the generated sequence
|
13 |
+
do_sample=True, # Enable sampling
|
14 |
+
top_k=50, # Top-k sampling
|
15 |
+
top_p=0.95, # Top-p sampling
|
16 |
+
temperature=0.7, # Control the creativity of the output
|
17 |
+
eos_token_id=0, # End-of-sequence token
|
18 |
+
# pad_token_id = tokenizer.eos_token_id,
|
19 |
+
)
|
20 |
+
return out[0]['generated_text']
|
21 |
+
|
22 |
+
# Now create the interface
|
23 |
+
gr.Interface(fn=predict, inputs="text", outputs="text", css=".footer{display:none !important}").launch(share=True)
|