zdou0830's picture
desco
749745d
import torch
import torch.nn.functional as F
import torch.distributed as dist
from torch import nn
from scipy.optimize import linear_sum_assignment
from torch.cuda.amp import custom_fwd, custom_bwd
def box_area(boxes):
return (boxes[:, 2] - boxes[:, 0]) * (boxes[:, 3] - boxes[:, 1])
# modified from torchvision to also return the union
def box_iou(boxes1, boxes2):
area1 = box_area(boxes1)
area2 = box_area(boxes2)
lt = torch.max(boxes1[:, None, :2], boxes2[:, :2]) # [N,M,2]
rb = torch.min(boxes1[:, None, 2:], boxes2[:, 2:]) # [N,M,2]
wh = (rb - lt).clamp(min=0) # [N,M,2]
inter = wh[:, :, 0] * wh[:, :, 1] # [N,M]
union = area1[:, None] + area2 - inter
iou = inter / union
return iou, union
def generalized_box_iou(boxes1, boxes2):
"""
Generalized IoU from https://giou.stanford.edu/
The boxes should be in [x0, y0, x1, y1] format
Returns a [N, M] pairwise matrix, where N = len(boxes1)
and M = len(boxes2)
"""
# degenerate boxes gives inf / nan results
# so do an early check
# assert (boxes1[:, 2:] >= boxes1[:, :2]).all()
# assert (boxes2[:, 2:] >= boxes2[:, :2]).all()
iou, union = box_iou(boxes1, boxes2)
lt = torch.min(boxes1[:, None, :2], boxes2[:, :2])
rb = torch.max(boxes1[:, None, 2:], boxes2[:, 2:])
wh = (rb - lt).clamp(min=0) # [N,M,2]
area = wh[:, :, 0] * wh[:, :, 1]
return iou - (area - union) / area
def dice_loss(inputs, targets, num_boxes):
"""
Compute the DICE loss, similar to generalized IOU for masks
Args:
inputs: A float tensor of arbitrary shape.
The predictions for each example.
targets: A float tensor with the same shape as inputs. Stores the binary
classification label for each element in inputs
(0 for the negative class and 1 for the positive class).
"""
inputs = inputs.sigmoid()
inputs = inputs.flatten(1)
numerator = 2 * (inputs * targets).sum(1)
denominator = inputs.sum(-1) + targets.sum(-1)
loss = 1 - (numerator + 1) / (denominator + 1)
return loss.sum() / num_boxes
def sigmoid_focal_loss(
inputs: torch.Tensor, targets: torch.Tensor, alpha: float = -1, gamma: float = 2, reduction: str = "none"
):
"""
Loss used in RetinaNet for dense detection: https://arxiv.org/abs/1708.02002.
Args:
inputs: A float tensor of arbitrary shape.
The predictions for each example.
targets: A float tensor with the same shape as inputs. Stores the binary
classification label for each element in inputs
(0 for the negative class and 1 for the positive class).
alpha: (optional) Weighting factor in range (0,1) to balance
positive vs negative examples. Default = -1 (no weighting).
gamma: Exponent of the modulating factor (1 - p_t) to
balance easy vs hard examples.
reduction: 'none' | 'mean' | 'sum'
'none': No reduction will be applied to the output.
'mean': The output will be averaged.
'sum': The output will be summed.
Returns:
Loss tensor with the reduction option applied.
"""
p = torch.sigmoid(inputs)
ce_loss = F.binary_cross_entropy_with_logits(inputs, targets, reduction="none")
p_t = p * targets + (1 - p) * (1 - targets)
loss = ce_loss * ((1 - p_t) ** gamma)
if alpha >= 0:
alpha_t = alpha * targets + (1 - alpha) * (1 - targets)
loss = alpha_t * loss
if reduction == "mean":
loss = loss.mean()
elif reduction == "sum":
loss = loss.sum()
return loss
sigmoid_focal_loss_jit = torch.jit.script(sigmoid_focal_loss) # type: torch.jit.ScriptModule
class HungarianMatcher(nn.Module):
"""This class computes an assignment between the targets and the predictions of the network
For efficiency reasons, the targets don't include the no_object. Because of this, in general,
there are more predictions than targets. In this case, we do a 1-to-1 matching of the best predictions,
while the others are un-matched (and thus treated as non-objects).
"""
def __init__(
self,
cost_class: float = 1,
cost_bbox: float = 1,
cost_giou: float = 1,
use_focal: bool = False,
focal_loss_alpha: float = 0.25,
focal_loss_gamma: float = 2.0,
**kwargs,
):
"""Creates the matcher
Params:
cost_class: This is the relative weight of the classification error in the matching cost
cost_bbox: This is the relative weight of the L1 error of the bounding box coordinates in the matching cost
cost_giou: This is the relative weight of the giou loss of the bounding box in the matching cost
"""
super().__init__()
self.cost_class = cost_class
self.cost_bbox = cost_bbox
self.cost_giou = cost_giou
self.use_focal = use_focal
if self.use_focal:
self.focal_loss_alpha = focal_loss_alpha
self.focal_loss_gamma = focal_loss_gamma
assert cost_class != 0 or cost_bbox != 0 or cost_giou != 0, "all costs cant be 0"
@torch.no_grad()
@custom_fwd(cast_inputs=torch.float32)
def forward(self, outputs, targets):
"""Performs the matching
Params:
outputs: This is a dict that contains at least these entries:
"pred_logits": Tensor of dim [batch_size, num_queries, num_classes] with the classification logits
"pred_boxes": Tensor of dim [batch_size, num_queries, 4] with the predicted box coordinates
targets: This is a list of targets (len(targets) = batch_size), where each target is a dict containing:
"labels": Tensor of dim [num_target_boxes] (where num_target_boxes is the number of ground-truth
objects in the target) containing the class labels
"boxes": Tensor of dim [num_target_boxes, 4] containing the target box coordinates
Returns:
A list of size batch_size, containing tuples of (index_i, index_j) where:
- index_i is the indices of the selected predictions (in order)
- index_j is the indices of the corresponding selected targets (in order)
For each batch element, it holds:
len(index_i) = len(index_j) = min(num_queries, num_target_boxes)
"""
bs, num_queries = outputs["pred_logits"].shape[:2]
# We flatten to compute the cost matrices in a batch
if self.use_focal:
out_prob = outputs["pred_logits"].flatten(0, 1).sigmoid() # [batch_size * num_queries, num_classes]
out_bbox = outputs["pred_boxes"].flatten(0, 1) # [batch_size * num_queries, 4]
else:
out_prob = outputs["pred_logits"].flatten(0, 1).softmax(-1) # [batch_size * num_queries, num_classes]
out_bbox = outputs["pred_boxes"].flatten(0, 1) # [batch_size * num_queries, 4]
# Also concat the target labels and boxes
tgt_ids = torch.cat([v["labels"] for v in targets])
tgt_bbox = torch.cat([v["boxes_xyxy"] for v in targets])
# Compute the classification cost. Contrary to the loss, we don't use the NLL,
# but approximate it in 1 - proba[target class].
# The 1 is a constant that doesn't change the matching, it can be ommitted.
if self.use_focal:
# Compute the classification cost.
alpha = self.focal_loss_alpha
gamma = self.focal_loss_gamma
neg_cost_class = (1 - alpha) * (out_prob**gamma) * (-(1 - out_prob + 1e-8).log())
pos_cost_class = alpha * ((1 - out_prob) ** gamma) * (-(out_prob + 1e-8).log())
cost_class = pos_cost_class[:, tgt_ids] - neg_cost_class[:, tgt_ids]
else:
cost_class = -out_prob[:, tgt_ids]
# Compute the L1 cost between boxes
image_size_out = torch.cat([v["image_size_xyxy"].unsqueeze(0) for v in targets])
image_size_out = image_size_out.unsqueeze(1).repeat(1, num_queries, 1).flatten(0, 1)
image_size_tgt = torch.cat([v["image_size_xyxy_tgt"] for v in targets])
out_bbox_ = out_bbox / image_size_out
tgt_bbox_ = tgt_bbox / image_size_tgt
cost_bbox = torch.cdist(out_bbox_, tgt_bbox_, p=1)
# Compute the giou cost betwen boxes
# cost_giou = -generalized_box_iou(box_cxcywh_to_xyxy(out_bbox), box_cxcywh_to_xyxy(tgt_bbox))
cost_giou = -generalized_box_iou(out_bbox, tgt_bbox)
# Final cost matrix
C = self.cost_bbox * cost_bbox + self.cost_class * cost_class + self.cost_giou * cost_giou
C = C.view(bs, num_queries, -1).cpu()
C[torch.isnan(C)] = 0.0
C[torch.isinf(C)] = 0.0
sizes = [len(v["boxes"]) for v in targets]
indices = [linear_sum_assignment(c[i]) for i, c in enumerate(C.split(sizes, -1))]
return [(torch.as_tensor(i, dtype=torch.int64), torch.as_tensor(j, dtype=torch.int64)) for i, j in indices]
class SetCriterion(nn.Module):
"""
The process happens in two steps:
1) we compute hungarian assignment between ground truth boxes and the outputs of the model
2) we supervise each pair of matched ground-truth / prediction (supervise class and box)
"""
def __init__(
self,
num_classes,
matcher,
weight_dict,
eos_coef,
losses,
use_focal,
focal_loss_alpha=0.25,
focal_loss_gamma=2.0,
):
"""Create the criterion.
Parameters:
num_classes: number of object categories, omitting the special no-object category
matcher: module able to compute a matching between targets and proposals
weight_dict: dict containing as key the names of the losses and as values their relative weight.
eos_coef: relative classification weight applied to the no-object category
losses: list of all the losses to be applied. See get_loss for list of available losses.
"""
super().__init__()
self.num_classes = num_classes
self.matcher = matcher
self.weight_dict = weight_dict
self.eos_coef = eos_coef
self.losses = losses
self.use_focal = use_focal
if self.use_focal:
self.focal_loss_alpha = focal_loss_alpha
self.focal_loss_gamma = focal_loss_gamma
else:
empty_weight = torch.ones(self.num_classes + 1)
empty_weight[-1] = self.eos_coef
self.register_buffer("empty_weight", empty_weight)
def loss_labels(self, outputs, targets, indices, num_boxes, log=False):
"""Classification loss (NLL)
targets dicts must contain the key "labels" containing a tensor of dim [nb_target_boxes]
"""
assert "pred_logits" in outputs
src_logits = outputs["pred_logits"]
idx = self._get_src_permutation_idx(indices)
target_classes_o = torch.cat([t["labels"][J] for t, (_, J) in zip(targets, indices)])
target_classes = torch.full(src_logits.shape[:2], self.num_classes, dtype=torch.int64, device=src_logits.device)
target_classes[idx] = target_classes_o
if self.use_focal:
src_logits = src_logits.flatten(0, 1)
# prepare one_hot target.
target_classes = target_classes.flatten(0, 1)
pos_inds = torch.nonzero(target_classes != self.num_classes, as_tuple=True)[0]
labels = torch.zeros_like(src_logits)
labels[pos_inds, target_classes[pos_inds]] = 1
# comp focal loss.
class_loss = (
sigmoid_focal_loss_jit(
src_logits,
labels,
alpha=self.focal_loss_alpha,
gamma=self.focal_loss_gamma,
reduction="sum",
)
/ num_boxes
)
losses = {"loss_ce": class_loss}
else:
loss_ce = F.cross_entropy(src_logits.transpose(1, 2), target_classes, self.empty_weight)
losses = {"loss_ce": loss_ce}
return losses
def loss_boxes(self, outputs, targets, indices, num_boxes):
"""Compute the losses related to the bounding boxes, the L1 regression loss and the GIoU loss
targets dicts must contain the key "boxes" containing a tensor of dim [nb_target_boxes, 4]
The target boxes are expected in format (center_x, center_y, w, h), normalized by the image size.
"""
assert "pred_boxes" in outputs
idx = self._get_src_permutation_idx(indices)
src_boxes = outputs["pred_boxes"][idx]
target_boxes = torch.cat([t["boxes_xyxy"][i] for t, (_, i) in zip(targets, indices)], dim=0)
losses = {}
loss_giou = 1 - torch.diag(generalized_box_iou(src_boxes, target_boxes))
losses["loss_giou"] = loss_giou.sum() / num_boxes
image_size = torch.cat([v["image_size_xyxy_tgt"] for v in targets])
src_boxes_ = src_boxes / image_size
target_boxes_ = target_boxes / image_size
loss_bbox = F.l1_loss(src_boxes_, target_boxes_, reduction="none")
losses["loss_bbox"] = loss_bbox.sum() / num_boxes
return losses
def _get_src_permutation_idx(self, indices):
# permute predictions following indices
batch_idx = torch.cat([torch.full_like(src, i) for i, (src, _) in enumerate(indices)])
src_idx = torch.cat([src for (src, _) in indices])
return batch_idx, src_idx
def _get_tgt_permutation_idx(self, indices):
# permute targets following indices
batch_idx = torch.cat([torch.full_like(tgt, i) for i, (_, tgt) in enumerate(indices)])
tgt_idx = torch.cat([tgt for (_, tgt) in indices])
return batch_idx, tgt_idx
def get_loss(self, loss, outputs, targets, indices, num_boxes, **kwargs):
loss_map = {
"labels": self.loss_labels,
"boxes": self.loss_boxes,
}
assert loss in loss_map, f"do you really want to compute {loss} loss?"
return loss_map[loss](outputs, targets, indices, num_boxes, **kwargs)
@custom_fwd(cast_inputs=torch.float32)
def forward(self, outputs, targets, *argrs, **kwargs):
"""This performs the loss computation.
Parameters:
outputs: dict of tensors, see the output specification of the model for the format
targets: list of dicts, such that len(targets) == batch_size.
The expected keys in each dict depends on the losses applied, see each loss' doc
"""
outputs_without_aux = {k: v for k, v in outputs.items() if k != "aux_outputs"}
# Retrieve the matching between the outputs of the last layer and the targets
indices = self.matcher(outputs_without_aux, targets)
# Compute the average number of target boxes accross all nodes, for normalization purposes
num_boxes = sum(len(t["labels"]) for t in targets)
num_boxes = torch.as_tensor([num_boxes], dtype=torch.float, device=next(iter(outputs.values())).device)
if dist.is_available() and dist.is_initialized():
torch.distributed.all_reduce(num_boxes)
word_size = dist.get_world_size()
else:
word_size = 1
num_boxes = torch.clamp(num_boxes / word_size, min=1).item()
# Compute all the requested losses
losses = {}
for loss in self.losses:
losses.update(self.get_loss(loss, outputs, targets, indices, num_boxes))
# In case of auxiliary losses, we repeat this process with the output of each intermediate layer.
if "aux_outputs" in outputs:
for i, aux_outputs in enumerate(outputs["aux_outputs"]):
indices = self.matcher(aux_outputs, targets)
for loss in self.losses:
if loss == "masks":
# Intermediate masks losses are too costly to compute, we ignore them.
continue
kwargs = {}
if loss == "labels":
# Logging is enabled only for the last layer
kwargs = {"log": False}
l_dict = self.get_loss(loss, aux_outputs, targets, indices, num_boxes, **kwargs)
l_dict = {k + f"_{i}": v for k, v in l_dict.items()}
losses.update(l_dict)
return losses