Spaces:
Sleeping
Sleeping
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. | |
import logging | |
import pickle | |
from collections import OrderedDict | |
import torch | |
from maskrcnn_benchmark.utils.model_serialization import load_state_dict | |
from maskrcnn_benchmark.utils.registry import Registry | |
def _rename_basic_resnet_weights(layer_keys): | |
layer_keys = [k.replace("_", ".") for k in layer_keys] | |
layer_keys = [k.replace(".w", ".weight") for k in layer_keys] | |
layer_keys = [k.replace(".bn", "_bn") for k in layer_keys] | |
layer_keys = [k.replace(".b", ".bias") for k in layer_keys] | |
layer_keys = [k.replace("_bn.s", "_bn.scale") for k in layer_keys] | |
layer_keys = [k.replace(".biasranch", ".branch") for k in layer_keys] | |
layer_keys = [k.replace("bbox.pred", "bbox_pred") for k in layer_keys] | |
layer_keys = [k.replace("cls.score", "cls_score") for k in layer_keys] | |
layer_keys = [k.replace("res.conv1_", "conv1_") for k in layer_keys] | |
# RPN / Faster RCNN | |
layer_keys = [k.replace(".biasbox", ".bbox") for k in layer_keys] | |
layer_keys = [k.replace("conv.rpn", "rpn.conv") for k in layer_keys] | |
layer_keys = [k.replace("rpn.bbox.pred", "rpn.bbox_pred") for k in layer_keys] | |
layer_keys = [k.replace("rpn.cls.logits", "rpn.cls_logits") for k in layer_keys] | |
# Affine-Channel -> BatchNorm enaming | |
layer_keys = [k.replace("_bn.scale", "_bn.weight") for k in layer_keys] | |
# Make torchvision-compatible | |
layer_keys = [k.replace("conv1_bn.", "bn1.") for k in layer_keys] | |
layer_keys = [k.replace("res2.", "layer1.") for k in layer_keys] | |
layer_keys = [k.replace("res3.", "layer2.") for k in layer_keys] | |
layer_keys = [k.replace("res4.", "layer3.") for k in layer_keys] | |
layer_keys = [k.replace("res5.", "layer4.") for k in layer_keys] | |
layer_keys = [k.replace(".branch2a.", ".conv1.") for k in layer_keys] | |
layer_keys = [k.replace(".branch2a_bn.", ".bn1.") for k in layer_keys] | |
layer_keys = [k.replace(".branch2b.", ".conv2.") for k in layer_keys] | |
layer_keys = [k.replace(".branch2b_bn.", ".bn2.") for k in layer_keys] | |
layer_keys = [k.replace(".branch2c.", ".conv3.") for k in layer_keys] | |
layer_keys = [k.replace(".branch2c_bn.", ".bn3.") for k in layer_keys] | |
layer_keys = [k.replace(".branch1.", ".downsample.0.") for k in layer_keys] | |
layer_keys = [k.replace(".branch1_bn.", ".downsample.1.") for k in layer_keys] | |
# GroupNorm | |
layer_keys = [k.replace("conv1.gn.s", "bn1.weight") for k in layer_keys] | |
layer_keys = [k.replace("conv1.gn.bias", "bn1.bias") for k in layer_keys] | |
layer_keys = [k.replace("conv2.gn.s", "bn2.weight") for k in layer_keys] | |
layer_keys = [k.replace("conv2.gn.bias", "bn2.bias") for k in layer_keys] | |
layer_keys = [k.replace("conv3.gn.s", "bn3.weight") for k in layer_keys] | |
layer_keys = [k.replace("conv3.gn.bias", "bn3.bias") for k in layer_keys] | |
layer_keys = [k.replace("downsample.0.gn.s", "downsample.1.weight") for k in layer_keys] | |
layer_keys = [k.replace("downsample.0.gn.bias", "downsample.1.bias") for k in layer_keys] | |
return layer_keys | |
def _rename_fpn_weights(layer_keys, stage_names): | |
for mapped_idx, stage_name in enumerate(stage_names, 1): | |
suffix = "" | |
if mapped_idx < 4: | |
suffix = ".lateral" | |
layer_keys = [ | |
k.replace("fpn.inner.layer{}.sum{}".format(stage_name, suffix), "fpn_inner{}".format(mapped_idx)) | |
for k in layer_keys | |
] | |
layer_keys = [ | |
k.replace("fpn.layer{}.sum".format(stage_name), "fpn_layer{}".format(mapped_idx)) for k in layer_keys | |
] | |
layer_keys = [k.replace("rpn.conv.fpn2", "rpn.conv") for k in layer_keys] | |
layer_keys = [k.replace("rpn.bbox_pred.fpn2", "rpn.bbox_pred") for k in layer_keys] | |
layer_keys = [k.replace("rpn.cls_logits.fpn2", "rpn.cls_logits") for k in layer_keys] | |
return layer_keys | |
def _rename_weights_for_resnet(weights, stage_names): | |
original_keys = sorted(weights.keys()) | |
layer_keys = sorted(weights.keys()) | |
# for X-101, rename output to fc1000 to avoid conflicts afterwards | |
layer_keys = [k if k != "pred_b" else "fc1000_b" for k in layer_keys] | |
layer_keys = [k if k != "pred_w" else "fc1000_w" for k in layer_keys] | |
# performs basic renaming: _ -> . , etc | |
layer_keys = _rename_basic_resnet_weights(layer_keys) | |
# FPN | |
layer_keys = _rename_fpn_weights(layer_keys, stage_names) | |
# Mask R-CNN | |
layer_keys = [k.replace("mask.fcn.logits", "mask_fcn_logits") for k in layer_keys] | |
layer_keys = [k.replace(".[mask].fcn", "mask_fcn") for k in layer_keys] | |
layer_keys = [k.replace("conv5.mask", "conv5_mask") for k in layer_keys] | |
# Keypoint R-CNN | |
layer_keys = [k.replace("kps.score.lowres", "kps_score_lowres") for k in layer_keys] | |
layer_keys = [k.replace("kps.score", "kps_score") for k in layer_keys] | |
layer_keys = [k.replace("conv.fcn", "conv_fcn") for k in layer_keys] | |
# Rename for our RPN structure | |
layer_keys = [k.replace("rpn.", "rpn.head.") for k in layer_keys] | |
key_map = {k: v for k, v in zip(original_keys, layer_keys)} | |
logger = logging.getLogger(__name__) | |
logger.info("Remapping C2 weights") | |
max_c2_key_size = max([len(k) for k in original_keys if "_momentum" not in k]) | |
new_weights = OrderedDict() | |
for k in original_keys: | |
v = weights[k] | |
if "_momentum" in k: | |
continue | |
if "weight_order" in k: | |
continue | |
# if 'fc1000' in k: | |
# continue | |
w = torch.from_numpy(v) | |
# if "bn" in k: | |
# w = w.view(1, -1, 1, 1) | |
logger.info("C2 name: {: <{}} mapped name: {}".format(k, max_c2_key_size, key_map[k])) | |
new_weights[key_map[k]] = w | |
return new_weights | |
def _load_c2_pickled_weights(file_path): | |
with open(file_path, "rb") as f: | |
if torch._six.PY3: | |
data = pickle.load(f, encoding="latin1") | |
else: | |
data = pickle.load(f) | |
if "blobs" in data: | |
weights = data["blobs"] | |
else: | |
weights = data | |
return weights | |
def _rename_conv_weights_for_deformable_conv_layers(state_dict, cfg): | |
import re | |
logger = logging.getLogger(__name__) | |
logger.info("Remapping conv weights for deformable conv weights") | |
layer_keys = sorted(state_dict.keys()) | |
for ix, stage_with_dcn in enumerate(cfg.MODEL.RESNETS.STAGE_WITH_DCN, 1): | |
if not stage_with_dcn: | |
continue | |
for old_key in layer_keys: | |
pattern = ".*layer{}.*conv2.*".format(ix) | |
r = re.match(pattern, old_key) | |
if r is None: | |
continue | |
for param in ["weight", "bias"]: | |
if old_key.find(param) is -1: | |
continue | |
new_key = old_key.replace("conv2.{}".format(param), "conv2.conv.{}".format(param)) | |
logger.info("pattern: {}, old_key: {}, new_key: {}".format(pattern, old_key, new_key)) | |
state_dict[new_key] = state_dict[old_key] | |
del state_dict[old_key] | |
return state_dict | |
_C2_STAGE_NAMES = { | |
"R-50": ["1.2", "2.3", "3.5", "4.2"], | |
"R-101": ["1.2", "2.3", "3.22", "4.2"], | |
} | |
C2_FORMAT_LOADER = Registry() | |
def load_resnet_c2_format(cfg, f): | |
state_dict = _load_c2_pickled_weights(f) | |
conv_body = cfg.MODEL.BACKBONE.CONV_BODY | |
arch = ( | |
conv_body.replace("-C4", "") | |
.replace("-C5", "") | |
.replace("-FPN", "") | |
.replace("-RETINANET", "") | |
.replace("-FCOS", "") | |
) | |
stages = _C2_STAGE_NAMES[arch] | |
state_dict = _rename_weights_for_resnet(state_dict, stages) | |
# *********************************** | |
# for deformable convolutional layer | |
state_dict = _rename_conv_weights_for_deformable_conv_layers(state_dict, cfg) | |
# *********************************** | |
return dict(model=state_dict) | |
def load_c2_format(cfg, f): | |
return C2_FORMAT_LOADER[cfg.MODEL.BACKBONE.CONV_BODY](cfg, f) | |