desco / maskrcnn_benchmark /engine /predictor_FIBER.py
zdou0830's picture
desco
749745d
raw
history blame
15.9 kB
import cv2
import torch
import re
import numpy as np
from typing import List, Union
import nltk
import inflect
from transformers import AutoTokenizer
from torchvision import transforms as T
from maskrcnn_benchmark.modeling.detector import build_detection_model
from maskrcnn_benchmark.utils.checkpoint import DetectronCheckpointer
from maskrcnn_benchmark.structures.image_list import to_image_list
from maskrcnn_benchmark.structures.boxlist_ops import boxlist_iou
from maskrcnn_benchmark.structures.bounding_box import BoxList
from maskrcnn_benchmark import layers as L
from maskrcnn_benchmark.modeling.roi_heads.mask_head.inference import Masker
from maskrcnn_benchmark.utils import cv2_util
engine = inflect.engine()
nltk.download("punkt")
nltk.download("averaged_perceptron_tagger")
import timeit
class GLIPDemo(object):
def __init__(
self,
cfg,
confidence_threshold=0.7,
min_image_size=None,
show_mask_heatmaps=False,
masks_per_dim=5,
):
self.cfg = cfg.clone()
self.model = build_detection_model(cfg)
self.model.eval()
self.device = torch.device(cfg.MODEL.DEVICE)
self.model.to(self.device)
self.min_image_size = min_image_size
self.show_mask_heatmaps = show_mask_heatmaps
self.masks_per_dim = masks_per_dim
save_dir = cfg.OUTPUT_DIR
checkpointer = DetectronCheckpointer(cfg, self.model, save_dir=save_dir)
_ = checkpointer.load(cfg.MODEL.WEIGHT)
self.transforms = self.build_transform()
# used to make colors for each tokens
mask_threshold = -1 if show_mask_heatmaps else 0.5
self.masker = Masker(threshold=mask_threshold, padding=1)
self.palette = torch.tensor([2**25 - 1, 2**15 - 1, 2**21 - 1])
self.cpu_device = torch.device("cpu")
self.confidence_threshold = confidence_threshold
self.tokenizer = self.build_tokenizer()
def build_transform(self):
"""
Creates a basic transformation that was used to train the models
"""
cfg = self.cfg
# we are loading images with OpenCV, so we don't need to convert them
# to BGR, they are already! So all we need to do is to normalize
# by 255 if we want to convert to BGR255 format, or flip the channels
# if we want it to be in RGB in [0-1] range.
if cfg.INPUT.TO_BGR255:
to_bgr_transform = T.Lambda(lambda x: x * 255)
else:
to_bgr_transform = T.Lambda(lambda x: x[[2, 1, 0]])
normalize_transform = T.Normalize(mean=cfg.INPUT.PIXEL_MEAN, std=cfg.INPUT.PIXEL_STD)
transform = T.Compose(
[
T.ToPILImage(),
T.Resize(self.min_image_size) if self.min_image_size is not None else lambda x: x,
T.ToTensor(),
to_bgr_transform,
normalize_transform,
]
)
return transform
def build_tokenizer(self):
cfg = self.cfg
tokenizer = None
if cfg.MODEL.LANGUAGE_BACKBONE.TOKENIZER_TYPE == "bert-base-uncased":
tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
if cfg.MODEL.LANGUAGE_BACKBONE.TOKENIZER_TYPE == "roberta-base":
tokenizer = AutoTokenizer.from_pretrained("roberta-base")
elif cfg.MODEL.LANGUAGE_BACKBONE.TOKENIZER_TYPE == "clip":
from transformers import CLIPTokenizerFast
if cfg.MODEL.DYHEAD.FUSE_CONFIG.MLM_LOSS:
tokenizer = CLIPTokenizerFast.from_pretrained(
"openai/clip-vit-base-patch32", from_slow=True, mask_token="ðŁĴij</w>"
)
else:
tokenizer = CLIPTokenizerFast.from_pretrained("openai/clip-vit-base-patch32", from_slow=True)
return tokenizer
def run_ner(self, caption, refexp_mode=False):
noun_phrases = find_noun_phrases(caption)
noun_phrases = [remove_punctuation(phrase) for phrase in noun_phrases]
noun_phrases = [phrase for phrase in noun_phrases if phrase != ""]
relevant_phrases = noun_phrases
if refexp_mode:
noun_phrases = [caption]
relevant_phrases = [caption]
labels = noun_phrases
self.entities = labels
tokens_positive = []
for entity, label in zip(relevant_phrases, labels):
try:
# search all occurrences and mark them as different entities
for m in re.finditer(entity, caption.lower()):
tokens_positive.append([[m.start(), m.end()]])
except:
print("noun entities:", noun_phrases)
print("entity:", entity)
print("caption:", caption.lower())
return tokens_positive
def inference(self, original_image, original_caption, refexp_mode=False):
predictions = self.compute_prediction(original_image, original_caption, refexp_mode)
top_predictions = self._post_process_fixed_thresh(predictions)
return top_predictions
def run_on_web_image(self, original_image, original_caption, thresh=0.5, refexp_mode=False):
predictions = self.compute_prediction(original_image, original_caption, refexp_mode)
top_predictions = self._post_process(predictions, thresh)
result = original_image.copy()
if self.show_mask_heatmaps:
return self.create_mask_montage(result, top_predictions)
result = self.overlay_boxes(result, top_predictions)
result = self.overlay_entity_names(result, top_predictions)
if self.cfg.MODEL.MASK_ON:
result = self.overlay_mask(result, top_predictions)
return result, top_predictions
def compute_prediction(self, original_image, original_caption, refexp_mode=False):
# image
image = self.transforms(original_image)
image_list = to_image_list(image, self.cfg.DATALOADER.SIZE_DIVISIBILITY)
image_list = image_list.to(self.device)
# caption
tokenized = self.tokenizer([original_caption], return_tensors="pt")
tokens_positive = self.run_ner(original_caption, refexp_mode)
# process positive map
positive_map = create_positive_map(tokenized, tokens_positive)
if self.cfg.MODEL.RPN_ARCHITECTURE == "VLDYHEAD":
plus = 1
else:
plus = 0
positive_map_label_to_token = create_positive_map_label_to_token_from_positive_map(positive_map, plus=plus)
self.plus = plus
self.positive_map_label_to_token = positive_map_label_to_token
tic = timeit.time.perf_counter()
# compute predictions
with torch.no_grad():
predictions = self.model(image_list, captions=[original_caption], positive_map=positive_map_label_to_token)
predictions = [o.to(self.cpu_device) for o in predictions]
print("inference time per image: {}".format(timeit.time.perf_counter() - tic))
# always single image is passed at a time
prediction = predictions[0]
# reshape prediction (a BoxList) into the original image size
height, width = original_image.shape[:-1]
prediction = prediction.resize((width, height))
if prediction.has_field("mask"):
# if we have masks, paste the masks in the right position
# in the image, as defined by the bounding boxes
masks = prediction.get_field("mask")
# always single image is passed at a time
masks = self.masker([masks], [prediction])[0]
prediction.add_field("mask", masks)
return prediction
def _post_process_fixed_thresh(self, predictions):
scores = predictions.get_field("scores")
labels = predictions.get_field("labels").tolist()
thresh = scores.clone()
for i, lb in enumerate(labels):
if isinstance(self.confidence_threshold, float):
thresh[i] = self.confidence_threshold
elif len(self.confidence_threshold) == 1:
thresh[i] = self.confidence_threshold[0]
else:
thresh[i] = self.confidence_threshold[lb - 1]
keep = torch.nonzero(scores > thresh).squeeze(1)
predictions = predictions[keep]
scores = predictions.get_field("scores")
_, idx = scores.sort(0, descending=True)
return predictions[idx]
def _post_process(self, predictions, threshold=0.5):
scores = predictions.get_field("scores")
labels = predictions.get_field("labels").tolist()
thresh = scores.clone()
for i, lb in enumerate(labels):
if isinstance(self.confidence_threshold, float):
thresh[i] = threshold
elif len(self.confidence_threshold) == 1:
thresh[i] = threshold
else:
thresh[i] = self.confidence_threshold[lb - 1]
keep = torch.nonzero(scores > thresh).squeeze(1)
predictions = predictions[keep]
scores = predictions.get_field("scores")
_, idx = scores.sort(0, descending=True)
return predictions[idx]
def compute_colors_for_labels(self, labels):
"""
Simple function that adds fixed colors depending on the class
"""
colors = (30 * (labels[:, None] - 1) + 1) * self.palette
colors = (colors % 255).numpy().astype("uint8")
return colors
def overlay_boxes(self, image, predictions):
labels = predictions.get_field("labels")
boxes = predictions.bbox
colors = self.compute_colors_for_labels(labels).tolist()
for box, color in zip(boxes, colors):
box = box.to(torch.int64)
top_left, bottom_right = box[:2].tolist(), box[2:].tolist()
image = cv2.rectangle(image, tuple(top_left), tuple(bottom_right), tuple(color), 2)
return image
def overlay_scores(self, image, predictions):
scores = predictions.get_field("scores")
boxes = predictions.bbox
for box, score in zip(boxes, scores):
box = box.to(torch.int64)
image = cv2.putText(
image,
"%.3f" % score,
(int(box[0]), int((box[1] + box[3]) / 2)),
cv2.FONT_HERSHEY_DUPLEX ,
0.3,
(255, 255, 255),
1,
)
return image
def overlay_entity_names(self, image, predictions, names=None):
scores = predictions.get_field("scores").tolist()
labels = predictions.get_field("labels").tolist()
new_labels = []
if self.entities and self.plus:
for i in labels:
if i <= len(self.entities):
new_labels.append(self.entities[i - self.plus])
else:
new_labels.append("object")
# labels = [self.entities[i - self.plus] for i in labels ]
else:
new_labels = ["object" for i in labels]
boxes = predictions.bbox
template = "{}: {:.2f}"
for box, score, label in zip(boxes, scores, new_labels):
x, y = box[:2]
s = template.format(label, score)
cv2.putText(image, s, (int(x), int(y + 10)), cv2.FONT_HERSHEY_DUPLEX, 0.5, (255, 255, 255), 1)
return image
def overlay_mask(self, image, predictions):
masks = predictions.get_field("mask").numpy()
labels = predictions.get_field("labels")
colors = self.compute_colors_for_labels(labels).tolist()
# import pdb
# pdb.set_trace()
# masks = masks > 0.1
for mask, color in zip(masks, colors):
thresh = mask[0, :, :, None].astype(np.uint8)
contours, hierarchy = cv2_util.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
image = cv2.drawContours(image, contours, -1, color, 2)
composite = image
return composite
def create_mask_montage(self, image, predictions):
masks = predictions.get_field("mask")
masks_per_dim = self.masks_per_dim
masks = L.interpolate(masks.float(), scale_factor=1 / masks_per_dim).byte()
height, width = masks.shape[-2:]
max_masks = masks_per_dim**2
masks = masks[:max_masks]
# handle case where we have less detections than max_masks
if len(masks) < max_masks:
masks_padded = torch.zeros(max_masks, 1, height, width, dtype=torch.uint8)
masks_padded[: len(masks)] = masks
masks = masks_padded
masks = masks.reshape(masks_per_dim, masks_per_dim, height, width)
result = torch.zeros((masks_per_dim * height, masks_per_dim * width), dtype=torch.uint8)
for y in range(masks_per_dim):
start_y = y * height
end_y = (y + 1) * height
for x in range(masks_per_dim):
start_x = x * width
end_x = (x + 1) * width
result[start_y:end_y, start_x:end_x] = masks[y, x]
return cv2.applyColorMap(result.numpy(), cv2.COLORMAP_JET), None
def create_positive_map_label_to_token_from_positive_map(positive_map, plus=0):
positive_map_label_to_token = {}
for i in range(len(positive_map)):
positive_map_label_to_token[i + plus] = torch.nonzero(positive_map[i], as_tuple=True)[0].tolist()
return positive_map_label_to_token
def create_positive_map(tokenized, tokens_positive):
"""construct a map such that positive_map[i,j] = True iff box i is associated to token j"""
positive_map = torch.zeros((len(tokens_positive), 256), dtype=torch.float)
for j, tok_list in enumerate(tokens_positive):
for (beg, end) in tok_list:
try:
beg_pos = tokenized.char_to_token(beg)
end_pos = tokenized.char_to_token(end - 1)
except Exception as e:
print("beg:", beg, "end:", end)
print("token_positive:", tokens_positive)
# print("beg_pos:", beg_pos, "end_pos:", end_pos)
raise e
if beg_pos is None:
try:
beg_pos = tokenized.char_to_token(beg + 1)
if beg_pos is None:
beg_pos = tokenized.char_to_token(beg + 2)
except:
beg_pos = None
if end_pos is None:
try:
end_pos = tokenized.char_to_token(end - 2)
if end_pos is None:
end_pos = tokenized.char_to_token(end - 3)
except:
end_pos = None
if beg_pos is None or end_pos is None:
continue
assert beg_pos is not None and end_pos is not None
positive_map[j, beg_pos : end_pos + 1].fill_(1)
return positive_map / (positive_map.sum(-1)[:, None] + 1e-6)
def find_noun_phrases(caption: str) -> List[str]:
caption = caption.lower()
tokens = nltk.word_tokenize(caption)
pos_tags = nltk.pos_tag(tokens)
grammar = "NP: {<DT>?<JJ.*>*<NN.*>+}"
cp = nltk.RegexpParser(grammar)
result = cp.parse(pos_tags)
noun_phrases = list()
for subtree in result.subtrees():
if subtree.label() == "NP":
noun_phrases.append(" ".join(t[0] for t in subtree.leaves()))
return noun_phrases
def remove_punctuation(text: str) -> str:
punct = [
"|",
":",
";",
"@",
"(",
")",
"[",
"]",
"{",
"}",
"^",
"'",
'"',
"’",
"`",
"?",
"$",
"%",
"#",
"!",
"&",
"*",
"+",
",",
".",
]
for p in punct:
text = text.replace(p, "")
return text.strip()