desco / tools /test_net.py
zdou0830's picture
desco
749745d
raw
history blame
4.89 kB
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
# Set up custom environment before nearly anything else is imported
# NOTE: this should be the first import (no not reorder)
from maskrcnn_benchmark.utils.env import setup_environment # noqa F401 isort:skip
import argparse
import os
import torch
from maskrcnn_benchmark.config import cfg
from maskrcnn_benchmark.data import make_data_loader
from maskrcnn_benchmark.engine.inference import inference
from maskrcnn_benchmark.modeling.detector import build_detection_model
from maskrcnn_benchmark.utils.checkpoint import DetectronCheckpointer
from maskrcnn_benchmark.utils.collect_env import collect_env_info
from maskrcnn_benchmark.utils.comm import synchronize, get_rank
from maskrcnn_benchmark.utils.logger import setup_logger
from maskrcnn_benchmark.utils.miscellaneous import mkdir
from maskrcnn_benchmark.utils.stats import get_model_complexity_info
def run_test(cfg, model, distributed, log_dir):
if distributed and hasattr(model, "module"):
model = model.module
torch.cuda.empty_cache() # TODO check if it helps
iou_types = ("bbox",)
if cfg.MODEL.MASK_ON:
iou_types = iou_types + ("segm",)
if cfg.MODEL.KEYPOINT_ON:
iou_types = iou_types + ("keypoints",)
dataset_names = cfg.DATASETS.TEST
if isinstance(dataset_names[0], (list, tuple)):
dataset_names = [dataset for group in dataset_names for dataset in group]
output_folders = [None] * len(dataset_names)
if log_dir:
for idx, dataset_name in enumerate(dataset_names):
output_folder = os.path.join(log_dir, "inference", dataset_name)
mkdir(output_folder)
output_folders[idx] = output_folder
data_loaders_val = make_data_loader(cfg, is_train=False, is_distributed=distributed)
for output_folder, dataset_name, data_loader_val in zip(output_folders, dataset_names, data_loaders_val):
inference(
model,
data_loader_val,
dataset_name=dataset_name,
iou_types=iou_types,
box_only=cfg.MODEL.RPN_ONLY and (cfg.MODEL.RPN_ARCHITECTURE == "RPN" or cfg.DATASETS.CLASS_AGNOSTIC),
device=cfg.MODEL.DEVICE,
expected_results=cfg.TEST.EXPECTED_RESULTS,
expected_results_sigma_tol=cfg.TEST.EXPECTED_RESULTS_SIGMA_TOL,
output_folder=output_folder,
cfg=cfg,
)
synchronize()
def main():
parser = argparse.ArgumentParser(description="PyTorch Object Detection Inference")
parser.add_argument(
"--config-file",
default="/private/home/fmassa/github/detectron.pytorch_v2/configs/e2e_faster_rcnn_R_50_C4_1x_caffe2.yaml",
metavar="FILE",
help="path to config file",
)
parser.add_argument(
"--weight",
default=None,
metavar="FILE",
help="path to config file",
)
parser.add_argument("--local_rank", type=int, default=0)
parser.add_argument(
"opts",
help="Modify config options using the command-line",
default=None,
nargs=argparse.REMAINDER,
)
args = parser.parse_args()
num_gpus = int(os.environ["WORLD_SIZE"]) if "WORLD_SIZE" in os.environ else 1
distributed = num_gpus > 1
if distributed:
torch.cuda.set_device(args.local_rank)
torch.distributed.init_process_group(backend="nccl", init_method="env://")
cfg.local_rank = args.local_rank
cfg.num_gpus = num_gpus
cfg.merge_from_file(args.config_file)
cfg.merge_from_list(args.opts)
cfg.freeze()
log_dir = cfg.OUTPUT_DIR
if args.weight:
log_dir = os.path.join(log_dir, "eval", os.path.splitext(os.path.basename(args.weight))[0])
if log_dir:
mkdir(log_dir)
logger = setup_logger("maskrcnn_benchmark", log_dir, get_rank())
logger.info(args)
logger.info("Using {} GPUs".format(num_gpus))
logger.info(cfg)
logger.info("Collecting env info (might take some time)")
logger.info("\n" + collect_env_info())
model = build_detection_model(cfg)
model.to(cfg.MODEL.DEVICE)
params, flops = get_model_complexity_info(
model,
(3, cfg.INPUT.MAX_SIZE_TEST, cfg.INPUT.MIN_SIZE_TEST),
input_constructor=lambda x: {"images": [torch.rand(x).cuda()]},
)
print("FLOPs: {}, #Parameter: {}".format(params, flops))
checkpointer = DetectronCheckpointer(cfg, model, save_dir=cfg.OUTPUT_DIR)
if args.weight:
_ = checkpointer.load(args.weight, force=True)
else:
_ = checkpointer.load(cfg.MODEL.WEIGHT)
run_test(cfg, model, distributed, log_dir)
logger.info("FLOPs: {}, #Parameter: {}".format(params, flops))
if __name__ == "__main__":
main()