Spaces:
Sleeping
Sleeping
import torch | |
from maskrcnn_benchmark.config import cfg | |
# transpose | |
FLIP_LEFT_RIGHT = 0 | |
FLIP_TOP_BOTTOM = 1 | |
class Keypoints(object): | |
def __init__(self, keypoints, size, mode=None): | |
# FIXME remove check once we have better integration with device | |
# in my version this would consistently return a CPU tensor | |
device = keypoints.device if isinstance(keypoints, torch.Tensor) else torch.device("cpu") | |
keypoints = torch.as_tensor(keypoints, dtype=torch.float32, device=device) | |
num_keypoints = keypoints.shape[0] | |
if num_keypoints: | |
keypoints = keypoints.view(num_keypoints, -1, 3) | |
# TODO should I split them? | |
# self.visibility = keypoints[..., 2] | |
self.keypoints = keypoints # [..., :2] | |
self.size = size | |
self.mode = mode | |
self.extra_fields = {} | |
def crop(self, box): | |
raise NotImplementedError() | |
def resize(self, size, *args, **kwargs): | |
ratios = tuple(float(s) / float(s_orig) for s, s_orig in zip(size, self.size)) | |
ratio_w, ratio_h = ratios | |
resized_data = self.keypoints.clone() | |
resized_data[..., 0] *= ratio_w | |
resized_data[..., 1] *= ratio_h | |
keypoints = type(self)(resized_data, size, self.mode) | |
for k, v in self.extra_fields.items(): | |
keypoints.add_field(k, v) | |
return keypoints | |
def transpose(self, method): | |
if method not in (FLIP_LEFT_RIGHT,): | |
raise NotImplementedError("Only FLIP_LEFT_RIGHT implemented") | |
flip_inds = self.FLIP_INDS | |
flipped_data = self.keypoints[:, flip_inds] | |
width = self.size[0] | |
TO_REMOVE = 1 | |
# Flip x coordinates | |
flipped_data[..., 0] = width - flipped_data[..., 0] - TO_REMOVE | |
# Maintain COCO convention that if visibility == 0, then x, y = 0 | |
inds = flipped_data[..., 2] == 0 | |
flipped_data[inds] = 0 | |
keypoints = type(self)(flipped_data, self.size, self.mode) | |
for k, v in self.extra_fields.items(): | |
keypoints.add_field(k, v) | |
return keypoints | |
def to(self, *args, **kwargs): | |
keypoints = type(self)(self.keypoints.to(*args, **kwargs), self.size, self.mode) | |
for k, v in self.extra_fields.items(): | |
if hasattr(v, "to"): | |
v = v.to(*args, **kwargs) | |
keypoints.add_field(k, v) | |
return keypoints | |
def __getitem__(self, item): | |
keypoints = type(self)(self.keypoints[item], self.size, self.mode) | |
for k, v in self.extra_fields.items(): | |
keypoints.add_field(k, v[item]) | |
return keypoints | |
def add_field(self, field, field_data): | |
self.extra_fields[field] = field_data | |
def get_field(self, field): | |
return self.extra_fields[field] | |
def __repr__(self): | |
s = self.__class__.__name__ + "(" | |
s += "num_instances={}, ".format(len(self.keypoints)) | |
s += "image_width={}, ".format(self.size[0]) | |
s += "image_height={})".format(self.size[1]) | |
return s | |
class PersonKeypoints(Keypoints): | |
_NAMES = [ | |
"nose", | |
"left_eye", | |
"right_eye", | |
"left_ear", | |
"right_ear", | |
"left_shoulder", | |
"right_shoulder", | |
"left_elbow", | |
"right_elbow", | |
"left_wrist", | |
"right_wrist", | |
"left_hip", | |
"right_hip", | |
"left_knee", | |
"right_knee", | |
"left_ankle", | |
"right_ankle", | |
] | |
_FLIP_MAP = { | |
"left_eye": "right_eye", | |
"left_ear": "right_ear", | |
"left_shoulder": "right_shoulder", | |
"left_elbow": "right_elbow", | |
"left_wrist": "right_wrist", | |
"left_hip": "right_hip", | |
"left_knee": "right_knee", | |
"left_ankle": "right_ankle", | |
} | |
def __init__(self, *args, **kwargs): | |
super(PersonKeypoints, self).__init__(*args, **kwargs) | |
if len(cfg.MODEL.ROI_KEYPOINT_HEAD.KEYPOINT_NAME) > 0: | |
self.NAMES = cfg.MODEL.ROI_KEYPOINT_HEAD.KEYPOINT_NAME | |
self.FLIP_MAP = { | |
l: r for l, r in PersonKeypoints._FLIP_MAP.items() if l in cfg.MODEL.ROI_KEYPOINT_HEAD.KEYPOINT_NAME | |
} | |
else: | |
self.NAMES = PersonKeypoints._NAMES | |
self.FLIP_MAP = PersonKeypoints._FLIP_MAP | |
self.FLIP_INDS = self._create_flip_indices(self.NAMES, self.FLIP_MAP) | |
self.CONNECTIONS = self._kp_connections(self.NAMES) | |
def to_coco_format(self): | |
coco_result = [] | |
for i in range(self.keypoints.shape[0]): | |
coco_kps = [0] * len(PersonKeypoints._NAMES) * 3 | |
for ki, name in enumerate(self.NAMES): | |
coco_kps[3 * PersonKeypoints._NAMES.index(name)] = self.keypoints[i, ki, 0].item() | |
coco_kps[3 * PersonKeypoints._NAMES.index(name) + 1] = self.keypoints[i, ki, 1].item() | |
coco_kps[3 * PersonKeypoints._NAMES.index(name) + 2] = self.keypoints[i, ki, 2].item() | |
coco_result.append(coco_kps) | |
return coco_result | |
def _create_flip_indices(self, names, flip_map): | |
full_flip_map = flip_map.copy() | |
full_flip_map.update({v: k for k, v in flip_map.items()}) | |
flipped_names = [i if i not in full_flip_map else full_flip_map[i] for i in names] | |
flip_indices = [names.index(i) for i in flipped_names] | |
return torch.tensor(flip_indices) | |
def _kp_connections(self, keypoints): | |
CONNECTIONS = [ | |
["left_eye", "right_eye"], | |
["left_eye", "nose"], | |
["right_eye", "nose"], | |
["right_eye", "right_ear"], | |
["left_eye", "left_ear"], | |
["right_shoulder", "right_elbow"], | |
["right_elbow", "right_wrist"], | |
["left_shoulder", "left_elbow"], | |
["left_elbow", "left_wrist"], | |
["right_hip", "right_knee"], | |
["right_knee", "right_ankle"], | |
["left_hip", "left_knee"], | |
["left_knee", "left_ankle"], | |
["right_shoulder", "left_shoulder"], | |
["right_hip", "left_hip"], | |
] | |
kp_lines = [ | |
[keypoints.index(conn[0]), keypoints.index(conn[1])] | |
for conn in CONNECTIONS | |
if conn[0] in self.NAMES and conn[1] in self.NAMES | |
] | |
return kp_lines | |
# TODO make this nicer, this is a direct translation from C2 (but removing the inner loop) | |
def keypoints_to_heat_map(keypoints, rois, heatmap_size): | |
if rois.numel() == 0: | |
return rois.new().long(), rois.new().long() | |
offset_x = rois[:, 0] | |
offset_y = rois[:, 1] | |
scale_x = heatmap_size / (rois[:, 2] - rois[:, 0]) | |
scale_y = heatmap_size / (rois[:, 3] - rois[:, 1]) | |
offset_x = offset_x[:, None] | |
offset_y = offset_y[:, None] | |
scale_x = scale_x[:, None] | |
scale_y = scale_y[:, None] | |
x = keypoints[..., 0] | |
y = keypoints[..., 1] | |
x_boundary_inds = x == rois[:, 2][:, None] | |
y_boundary_inds = y == rois[:, 3][:, None] | |
x = (x - offset_x) * scale_x | |
x = x.floor().long() | |
y = (y - offset_y) * scale_y | |
y = y.floor().long() | |
x[x_boundary_inds] = heatmap_size - 1 | |
y[y_boundary_inds] = heatmap_size - 1 | |
valid_loc = (x >= 0) & (y >= 0) & (x < heatmap_size) & (y < heatmap_size) | |
vis = keypoints[..., 2] > 0 | |
valid = (valid_loc & vis).long() | |
lin_ind = y * heatmap_size + x | |
heatmaps = lin_ind * valid | |
return heatmaps, valid | |