zdou0830's picture
desco
749745d
raw
history blame
2.01 kB
import torch
from .roi_keypoint_feature_extractors import make_roi_keypoint_feature_extractor
from .roi_keypoint_predictors import make_roi_keypoint_predictor
from .inference import make_roi_keypoint_post_processor
from .loss import make_roi_keypoint_loss_evaluator
class ROIKeypointHead(torch.nn.Module):
def __init__(self, cfg):
super(ROIKeypointHead, self).__init__()
self.cfg = cfg.clone()
self.feature_extractor = make_roi_keypoint_feature_extractor(cfg)
self.predictor = make_roi_keypoint_predictor(cfg)
self.post_processor = make_roi_keypoint_post_processor(cfg)
self.loss_evaluator = make_roi_keypoint_loss_evaluator(cfg)
def forward(self, features, proposals, targets=None):
"""
Arguments:
features (list[Tensor]): feature-maps from possibly several levels
proposals (list[BoxList]): proposal boxes
targets (list[BoxList], optional): the ground-truth targets.
Returns:
x (Tensor): the result of the feature extractor
proposals (list[BoxList]): during training, the original proposals
are returned. During testing, the predicted boxlists are returned
with the `mask` field set
losses (dict[Tensor]): During training, returns the losses for the
head. During testing, returns an empty dict.
"""
if self.training:
with torch.no_grad():
proposals = self.loss_evaluator.subsample(proposals, targets)
x = self.feature_extractor(features, proposals)
kp_logits = self.predictor(x)
if not self.training:
result = self.post_processor(kp_logits, proposals)
return x, result, {}
loss_kp = self.loss_evaluator(proposals, kp_logits)
return x, proposals, dict(loss_kp=loss_kp)
def build_roi_keypoint_head(cfg):
return ROIKeypointHead(cfg)