Spaces:
Sleeping
Sleeping
import torch | |
from .roi_keypoint_feature_extractors import make_roi_keypoint_feature_extractor | |
from .roi_keypoint_predictors import make_roi_keypoint_predictor | |
from .inference import make_roi_keypoint_post_processor | |
from .loss import make_roi_keypoint_loss_evaluator | |
class ROIKeypointHead(torch.nn.Module): | |
def __init__(self, cfg): | |
super(ROIKeypointHead, self).__init__() | |
self.cfg = cfg.clone() | |
self.feature_extractor = make_roi_keypoint_feature_extractor(cfg) | |
self.predictor = make_roi_keypoint_predictor(cfg) | |
self.post_processor = make_roi_keypoint_post_processor(cfg) | |
self.loss_evaluator = make_roi_keypoint_loss_evaluator(cfg) | |
def forward(self, features, proposals, targets=None): | |
""" | |
Arguments: | |
features (list[Tensor]): feature-maps from possibly several levels | |
proposals (list[BoxList]): proposal boxes | |
targets (list[BoxList], optional): the ground-truth targets. | |
Returns: | |
x (Tensor): the result of the feature extractor | |
proposals (list[BoxList]): during training, the original proposals | |
are returned. During testing, the predicted boxlists are returned | |
with the `mask` field set | |
losses (dict[Tensor]): During training, returns the losses for the | |
head. During testing, returns an empty dict. | |
""" | |
if self.training: | |
with torch.no_grad(): | |
proposals = self.loss_evaluator.subsample(proposals, targets) | |
x = self.feature_extractor(features, proposals) | |
kp_logits = self.predictor(x) | |
if not self.training: | |
result = self.post_processor(kp_logits, proposals) | |
return x, result, {} | |
loss_kp = self.loss_evaluator(proposals, kp_logits) | |
return x, proposals, dict(loss_kp=loss_kp) | |
def build_roi_keypoint_head(cfg): | |
return ROIKeypointHead(cfg) | |