Spaces:
Sleeping
Sleeping
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. | |
""" | |
helper class that supports empty tensors on some nn functions. | |
Ideally, add support directly in PyTorch to empty tensors in | |
those functions. | |
This can be removed once https://github.com/pytorch/pytorch/issues/12013 | |
is implemented | |
""" | |
import math | |
import torch | |
from torch.nn.modules.utils import _ntuple | |
class _NewEmptyTensorOp(torch.autograd.Function): | |
def forward(ctx, x, new_shape): | |
ctx.shape = x.shape | |
return x.new_empty(new_shape) | |
def backward(ctx, grad): | |
shape = ctx.shape | |
return _NewEmptyTensorOp.apply(grad, shape), None | |
class Conv2d(torch.nn.Conv2d): | |
def forward(self, x): | |
if x.numel() > 0: | |
return super(Conv2d, self).forward(x) | |
# get output shape | |
output_shape = [ | |
(i + 2 * p - (di * (k - 1) + 1)) // d + 1 | |
for i, p, di, k, d in zip(x.shape[-2:], self.padding, self.dilation, self.kernel_size, self.stride) | |
] | |
output_shape = [x.shape[0], self.weight.shape[0]] + output_shape | |
return _NewEmptyTensorOp.apply(x, output_shape) | |
class ConvTranspose2d(torch.nn.ConvTranspose2d): | |
def forward(self, x): | |
if x.numel() > 0: | |
return super(ConvTranspose2d, self).forward(x) | |
# get output shape | |
output_shape = [ | |
(i - 1) * d - 2 * p + (di * (k - 1) + 1) + op | |
for i, p, di, k, d, op in zip( | |
x.shape[-2:], | |
self.padding, | |
self.dilation, | |
self.kernel_size, | |
self.stride, | |
self.output_padding, | |
) | |
] | |
output_shape = [x.shape[0], self.bias.shape[0]] + output_shape | |
return _NewEmptyTensorOp.apply(x, output_shape) | |
class BatchNorm2d(torch.nn.BatchNorm2d): | |
def forward(self, x): | |
if x.numel() > 0: | |
return super(BatchNorm2d, self).forward(x) | |
# get output shape | |
output_shape = x.shape | |
return _NewEmptyTensorOp.apply(x, output_shape) | |
def interpolate(input, size=None, scale_factor=None, mode="nearest", align_corners=None): | |
if input.numel() > 0: | |
return torch.nn.functional.interpolate(input, size, scale_factor, mode, align_corners) | |
def _check_size_scale_factor(dim): | |
if size is None and scale_factor is None: | |
raise ValueError("either size or scale_factor should be defined") | |
if size is not None and scale_factor is not None: | |
raise ValueError("only one of size or scale_factor should be defined") | |
if scale_factor is not None and isinstance(scale_factor, tuple) and len(scale_factor) != dim: | |
raise ValueError( | |
"scale_factor shape must match input shape. " | |
"Input is {}D, scale_factor size is {}".format(dim, len(scale_factor)) | |
) | |
def _output_size(dim): | |
_check_size_scale_factor(dim) | |
if size is not None: | |
return size | |
scale_factors = _ntuple(dim)(scale_factor) | |
# math.floor might return float in py2.7 | |
return [int(math.floor(input.size(i + 2) * scale_factors[i])) for i in range(dim)] | |
output_shape = tuple(_output_size(2)) | |
output_shape = input.shape[:-2] + output_shape | |
return _NewEmptyTensorOp.apply(input, output_shape) | |
class Scale(torch.nn.Module): | |
def __init__(self, init_value=1.0): | |
super(Scale, self).__init__() | |
self.scale = torch.nn.Parameter(torch.FloatTensor([init_value])) | |
def forward(self, input): | |
return input * self.scale | |
class DFConv2d(torch.nn.Module): | |
"""Deformable convolutional layer""" | |
def __init__( | |
self, | |
in_channels, | |
out_channels, | |
with_modulated_dcn=True, | |
kernel_size=3, | |
stride=1, | |
groups=1, | |
padding=1, | |
dilation=1, | |
deformable_groups=1, | |
bias=False, | |
): | |
super(DFConv2d, self).__init__() | |
if isinstance(kernel_size, (list, tuple)): | |
assert len(kernel_size) == 2 | |
offset_base_channels = kernel_size[0] * kernel_size[1] | |
else: | |
offset_base_channels = kernel_size * kernel_size | |
if with_modulated_dcn: | |
from maskrcnn_benchmark.layers import ModulatedDeformConv | |
offset_channels = offset_base_channels * 3 # default: 27 | |
conv_block = ModulatedDeformConv | |
else: | |
from maskrcnn_benchmark.layers import DeformConv | |
offset_channels = offset_base_channels * 2 # default: 18 | |
conv_block = DeformConv | |
self.offset = Conv2d( | |
in_channels, | |
deformable_groups * offset_channels, | |
kernel_size=kernel_size, | |
stride=stride, | |
padding=padding, | |
groups=1, | |
dilation=dilation, | |
) | |
for l in [ | |
self.offset, | |
]: | |
torch.nn.init.kaiming_uniform_(l.weight, a=1) | |
torch.nn.init.constant_(l.bias, 0.0) | |
self.conv = conv_block( | |
in_channels, | |
out_channels, | |
kernel_size=kernel_size, | |
stride=stride, | |
padding=padding, | |
dilation=dilation, | |
groups=groups, | |
deformable_groups=deformable_groups, | |
bias=bias, | |
) | |
self.with_modulated_dcn = with_modulated_dcn | |
self.kernel_size = kernel_size | |
self.stride = stride | |
self.padding = padding | |
self.dilation = dilation | |
self.offset_base_channels = offset_base_channels | |
def forward(self, x): | |
if x.numel() > 0: | |
if not self.with_modulated_dcn: | |
offset = self.offset(x) | |
x = self.conv(x, offset) | |
else: | |
offset_mask = self.offset(x) | |
split_point = self.offset_base_channels * 2 | |
offset = offset_mask[:, :split_point, :, :] | |
mask = offset_mask[:, split_point:, :, :].sigmoid() | |
x = self.conv(x, offset, mask) | |
return x | |
# get output shape | |
output_shape = [ | |
(i + 2 * p - (di * (k - 1) + 1)) // d + 1 | |
for i, p, di, k, d in zip(x.shape[-2:], self.padding, self.dilation, self.kernel_size, self.stride) | |
] | |
output_shape = [x.shape[0], self.conv.weight.shape[0]] + output_shape | |
return _NewEmptyTensorOp.apply(x, output_shape) | |