zdou0830's picture
desco
749745d
raw
history blame
15 kB
import math
import torch
import torch.nn.functional as F
from torch import nn
from .inference import make_atss_postprocessor
from .loss import make_atss_loss_evaluator
from .anchor_generator import make_anchor_generator_complex
from maskrcnn_benchmark.structures.boxlist_ops import cat_boxlist
from maskrcnn_benchmark.layers import Scale, DYReLU, SELayer, ModulatedDeformConv
from maskrcnn_benchmark.layers import NaiveSyncBatchNorm2d, FrozenBatchNorm2d
from maskrcnn_benchmark.modeling.backbone.fbnet import *
class h_sigmoid(nn.Module):
def __init__(self, inplace=True, h_max=1):
super(h_sigmoid, self).__init__()
self.relu = nn.ReLU6(inplace=inplace)
self.h_max = h_max
def forward(self, x):
return self.relu(x + 3) * self.h_max / 6
class BoxCoder(object):
def __init__(self, cfg):
self.cfg = cfg
def encode(self, gt_boxes, anchors):
TO_REMOVE = 1 # TODO remove
ex_widths = anchors[:, 2] - anchors[:, 0] + TO_REMOVE
ex_heights = anchors[:, 3] - anchors[:, 1] + TO_REMOVE
ex_ctr_x = (anchors[:, 2] + anchors[:, 0]) / 2
ex_ctr_y = (anchors[:, 3] + anchors[:, 1]) / 2
gt_widths = gt_boxes[:, 2] - gt_boxes[:, 0] + TO_REMOVE
gt_heights = gt_boxes[:, 3] - gt_boxes[:, 1] + TO_REMOVE
gt_ctr_x = (gt_boxes[:, 2] + gt_boxes[:, 0]) / 2
gt_ctr_y = (gt_boxes[:, 3] + gt_boxes[:, 1]) / 2
wx, wy, ww, wh = (10.0, 10.0, 5.0, 5.0)
targets_dx = wx * (gt_ctr_x - ex_ctr_x) / ex_widths
targets_dy = wy * (gt_ctr_y - ex_ctr_y) / ex_heights
targets_dw = ww * torch.log(gt_widths / ex_widths)
targets_dh = wh * torch.log(gt_heights / ex_heights)
targets = torch.stack((targets_dx, targets_dy, targets_dw, targets_dh), dim=1)
return targets
def decode(self, preds, anchors):
anchors = anchors.to(preds.dtype)
TO_REMOVE = 1 # TODO remove
widths = anchors[:, 2] - anchors[:, 0] + TO_REMOVE
heights = anchors[:, 3] - anchors[:, 1] + TO_REMOVE
ctr_x = (anchors[:, 2] + anchors[:, 0]) / 2
ctr_y = (anchors[:, 3] + anchors[:, 1]) / 2
wx, wy, ww, wh = (10.0, 10.0, 5.0, 5.0)
dx = preds[:, 0::4] / wx
dy = preds[:, 1::4] / wy
dw = preds[:, 2::4] / ww
dh = preds[:, 3::4] / wh
# Prevent sending too large values into torch.exp()
dw = torch.clamp(dw, max=math.log(1000.0 / 16))
dh = torch.clamp(dh, max=math.log(1000.0 / 16))
pred_ctr_x = dx * widths[:, None] + ctr_x[:, None]
pred_ctr_y = dy * heights[:, None] + ctr_y[:, None]
pred_w = torch.exp(dw) * widths[:, None]
pred_h = torch.exp(dh) * heights[:, None]
pred_boxes = torch.zeros_like(preds)
pred_boxes[:, 0::4] = pred_ctr_x - 0.5 * (pred_w - 1)
pred_boxes[:, 1::4] = pred_ctr_y - 0.5 * (pred_h - 1)
pred_boxes[:, 2::4] = pred_ctr_x + 0.5 * (pred_w - 1)
pred_boxes[:, 3::4] = pred_ctr_y + 0.5 * (pred_h - 1)
return pred_boxes
class Conv3x3Norm(torch.nn.Module):
def __init__(self, in_channels, out_channels, stride, groups=1, deformable=False, bn_type=None):
super(Conv3x3Norm, self).__init__()
if deformable:
self.conv = ModulatedDeformConv(
in_channels, out_channels, kernel_size=3, stride=stride, padding=1, groups=groups
)
else:
self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=stride, padding=1, groups=groups)
if isinstance(bn_type, (list, tuple)):
assert len(bn_type) == 2
assert bn_type[0] == "gn"
gn_group = bn_type[1]
bn_type = bn_type[0]
if bn_type == "bn":
bn_op = nn.BatchNorm2d(out_channels)
elif bn_type == "sbn":
bn_op = nn.SyncBatchNorm(out_channels)
elif bn_type == "nsbn":
bn_op = NaiveSyncBatchNorm2d(out_channels)
elif bn_type == "gn":
bn_op = nn.GroupNorm(num_groups=gn_group, num_channels=out_channels)
elif bn_type == "af":
bn_op = FrozenBatchNorm2d(out_channels)
if bn_type is not None:
self.bn = bn_op
else:
self.bn = None
def forward(self, input, **kwargs):
x = self.conv(input, **kwargs)
if self.bn:
x = self.bn(x)
return x
class DyConv(torch.nn.Module):
def __init__(
self,
in_channels=256,
out_channels=256,
conv_func=nn.Conv2d,
use_dyfuse=True,
use_dyrelu=False,
use_deform=False,
):
super(DyConv, self).__init__()
self.DyConv = nn.ModuleList()
self.DyConv.append(conv_func(in_channels, out_channels, 1))
self.DyConv.append(conv_func(in_channels, out_channels, 1))
self.DyConv.append(conv_func(in_channels, out_channels, 2))
if use_dyfuse:
self.AttnConv = nn.Sequential(
nn.AdaptiveAvgPool2d(1), nn.Conv2d(in_channels, 1, kernel_size=1), nn.ReLU(inplace=True)
)
self.h_sigmoid = h_sigmoid()
else:
self.AttnConv = None
if use_dyrelu:
self.relu = DYReLU(in_channels, out_channels)
else:
self.relu = nn.ReLU()
if use_deform:
self.offset = nn.Conv2d(in_channels, 27, kernel_size=3, stride=1, padding=1)
else:
self.offset = None
self.init_weights()
def init_weights(self):
for m in self.DyConv.modules():
if isinstance(m, nn.Conv2d):
nn.init.normal_(m.weight.data, 0, 0.01)
if m.bias is not None:
m.bias.data.zero_()
if self.AttnConv is not None:
for m in self.AttnConv.modules():
if isinstance(m, nn.Conv2d):
nn.init.normal_(m.weight.data, 0, 0.01)
if m.bias is not None:
m.bias.data.zero_()
def forward(self, x):
next_x = []
for level, feature in enumerate(x):
conv_args = dict()
if self.offset is not None:
offset_mask = self.offset(feature)
offset = offset_mask[:, :18, :, :]
mask = offset_mask[:, 18:, :, :].sigmoid()
conv_args = dict(offset=offset, mask=mask)
temp_fea = [self.DyConv[1](feature, **conv_args)]
if level > 0:
temp_fea.append(self.DyConv[2](x[level - 1], **conv_args))
if level < len(x) - 1:
temp_fea.append(
F.upsample_bilinear(
self.DyConv[0](x[level + 1], **conv_args), size=[feature.size(2), feature.size(3)]
)
)
mean_fea = torch.mean(torch.stack(temp_fea), dim=0, keepdim=False)
if self.AttnConv is not None:
attn_fea = []
res_fea = []
for fea in temp_fea:
res_fea.append(fea)
attn_fea.append(self.AttnConv(fea))
res_fea = torch.stack(res_fea)
spa_pyr_attn = self.h_sigmoid(torch.stack(attn_fea))
mean_fea = torch.mean(res_fea * spa_pyr_attn, dim=0, keepdim=False)
next_x.append(mean_fea)
next_x = [self.relu(item) for item in next_x]
return next_x
class DyHead(torch.nn.Module):
def __init__(self, cfg):
super(DyHead, self).__init__()
self.cfg = cfg
num_classes = cfg.MODEL.DYHEAD.NUM_CLASSES - 1
num_anchors = len(cfg.MODEL.RPN.ASPECT_RATIOS) * cfg.MODEL.RPN.SCALES_PER_OCTAVE
in_channels = cfg.MODEL.BACKBONE.OUT_CHANNELS
channels = cfg.MODEL.DYHEAD.CHANNELS
if cfg.MODEL.DYHEAD.USE_GN:
bn_type = ["gn", cfg.MODEL.GROUP_NORM.NUM_GROUPS]
elif cfg.MODEL.DYHEAD.USE_NSYNCBN:
bn_type = "nsbn"
elif cfg.MODEL.DYHEAD.USE_SYNCBN:
bn_type = "sbn"
else:
bn_type = None
use_dyrelu = cfg.MODEL.DYHEAD.USE_DYRELU
use_dyfuse = cfg.MODEL.DYHEAD.USE_DYFUSE
use_deform = cfg.MODEL.DYHEAD.USE_DFCONV
if cfg.MODEL.DYHEAD.CONV_FUNC:
conv_func = lambda i, o, s: eval(cfg.MODEL.DYHEAD.CONV_FUNC)(i, o, s, bn_type=bn_type)
else:
conv_func = lambda i, o, s: Conv3x3Norm(i, o, s, deformable=use_deform, bn_type=bn_type)
dyhead_tower = []
for i in range(cfg.MODEL.DYHEAD.NUM_CONVS):
dyhead_tower.append(
DyConv(
in_channels if i == 0 else channels,
channels,
conv_func=conv_func,
use_dyrelu=(use_dyrelu and in_channels == channels) if i == 0 else use_dyrelu,
use_dyfuse=(use_dyfuse and in_channels == channels) if i == 0 else use_dyfuse,
use_deform=(use_deform and in_channels == channels) if i == 0 else use_deform,
)
)
self.add_module("dyhead_tower", nn.Sequential(*dyhead_tower))
if cfg.MODEL.DYHEAD.COSINE_SCALE <= 0:
self.cls_logits = nn.Conv2d(channels, num_anchors * num_classes, kernel_size=1)
self.cls_logits_bias = None
else:
self.cls_logits = nn.Conv2d(channels, num_anchors * num_classes, kernel_size=1, bias=False)
self.cls_logits_bias = nn.Parameter(torch.zeros(num_anchors * num_classes, requires_grad=True))
self.cosine_scale = nn.Parameter(torch.ones(1) * cfg.MODEL.DYHEAD.COSINE_SCALE)
self.bbox_pred = nn.Conv2d(channels, num_anchors * 4, kernel_size=1)
self.centerness = nn.Conv2d(channels, num_anchors * 1, kernel_size=1)
# initialization
for modules in [self.cls_logits, self.bbox_pred, self.centerness]:
for l in modules.modules():
if isinstance(l, nn.Conv2d):
torch.nn.init.normal_(l.weight, std=0.01)
if hasattr(l, "bias") and l.bias is not None:
torch.nn.init.constant_(l.bias, 0)
# initialize the bias for focal loss
prior_prob = cfg.MODEL.DYHEAD.PRIOR_PROB
bias_value = -math.log((1 - prior_prob) / prior_prob)
if self.cls_logits_bias is None:
torch.nn.init.constant_(self.cls_logits.bias, bias_value)
else:
torch.nn.init.constant_(self.cls_logits_bias, bias_value)
self.scales = nn.ModuleList([Scale(init_value=1.0) for _ in range(5)])
def extract_feature(self, x):
output = []
for i in range(len(self.dyhead_tower)):
x = self.dyhead_tower[i](x)
output.append(x)
return output
def forward(self, x):
logits = []
bbox_reg = []
centerness = []
dyhead_tower = self.dyhead_tower(x)
for l, feature in enumerate(x):
if self.cls_logits_bias is None:
logit = self.cls_logits(dyhead_tower[l])
else:
# CosineSimOutputLayers: https://github.com/ucbdrive/few-shot-object-detection/blob/master/fsdet/modeling/roi_heads/fast_rcnn.py#L448-L464
# normalize the input x along the `channel` dimension
x_norm = torch.norm(dyhead_tower[l], p=2, dim=1, keepdim=True).expand_as(dyhead_tower[l])
x_normalized = dyhead_tower[l].div(x_norm + 1e-5)
# normalize weight
temp_norm = torch.norm(self.cls_logits.weight.data, p=2, dim=1, keepdim=True).expand_as(
self.cls_logits.weight.data
)
self.cls_logits.weight.data = self.cls_logits.weight.data.div(temp_norm + 1e-5)
cos_dist = self.cls_logits(x_normalized)
logit = self.cosine_scale * cos_dist + self.cls_logits_bias.reshape(1, len(self.cls_logits_bias), 1, 1)
logits.append(logit)
bbox_pred = self.scales[l](self.bbox_pred(dyhead_tower[l]))
bbox_reg.append(bbox_pred)
centerness.append(self.centerness(dyhead_tower[l]))
return logits, bbox_reg, centerness
class DyHeadModule(torch.nn.Module):
def __init__(self, cfg):
super(DyHeadModule, self).__init__()
self.cfg = cfg
self.head = DyHead(cfg)
box_coder = BoxCoder(cfg)
self.loss_evaluator = make_atss_loss_evaluator(cfg, box_coder)
self.box_selector_train = make_atss_postprocessor(cfg, box_coder, is_train=True)
self.box_selector_test = make_atss_postprocessor(cfg, box_coder, is_train=False)
self.anchor_generator = make_anchor_generator_complex(cfg)
def forward(self, images, features, targets=None):
box_cls, box_regression, centerness = self.head(features)
anchors = self.anchor_generator(images, features)
if self.training:
return self._forward_train(box_cls, box_regression, centerness, targets, anchors)
else:
return self._forward_test(box_cls, box_regression, centerness, anchors)
def _forward_train(self, box_cls, box_regression, centerness, targets, anchors):
loss_box_cls, loss_box_reg, loss_centerness, _, _, _, _ = self.loss_evaluator(
box_cls, box_regression, centerness, targets, anchors
)
losses = {"loss_cls": loss_box_cls, "loss_reg": loss_box_reg, "loss_centerness": loss_centerness}
if self.cfg.MODEL.RPN_ONLY:
return None, losses
else:
# boxes = self.box_selector_train(box_cls, box_regression, centerness, anchors)
boxes = self.box_selector_train(box_regression, centerness, anchors, box_cls)
train_boxes = []
# for b, a in zip(boxes, anchors):
# a = cat_boxlist(a)
# b.add_field("visibility", torch.ones(b.bbox.shape[0], dtype=torch.bool, device=b.bbox.device))
# del b.extra_fields['scores']
# del b.extra_fields['labels']
# train_boxes.append(cat_boxlist([b, a]))
for b, t in zip(boxes, targets):
tb = t.copy_with_fields(["labels"])
tb.add_field("scores", torch.ones(tb.bbox.shape[0], dtype=torch.bool, device=tb.bbox.device))
train_boxes.append(cat_boxlist([b, tb]))
return train_boxes, losses
def _forward_test(self, box_cls, box_regression, centerness, anchors):
boxes = self.box_selector_test(box_regression, centerness, anchors, box_cls)
return boxes, {}