Spaces:
Sleeping
Sleeping
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. | |
import torch | |
from torch.nn import functional as F | |
from maskrcnn_benchmark.layers import smooth_l1_loss | |
from maskrcnn_benchmark.modeling.matcher import Matcher | |
from maskrcnn_benchmark.structures.boxlist_ops import boxlist_iou | |
from maskrcnn_benchmark.modeling.utils import cat | |
def project_masks_on_boxes(segmentation_masks, proposals, discretization_size): | |
""" | |
Given segmentation masks and the bounding boxes corresponding | |
to the location of the masks in the image, this function | |
crops and resizes the masks in the position defined by the | |
boxes. This prepares the masks for them to be fed to the | |
loss computation as the targets. | |
Arguments: | |
segmentation_masks: an instance of SegmentationMask | |
proposals: an instance of BoxList | |
""" | |
masks = [] | |
M = discretization_size | |
device = proposals.bbox.device | |
proposals = proposals.convert("xyxy") | |
assert segmentation_masks.size == proposals.size, "{}, {}".format(segmentation_masks, proposals) | |
# TODO put the proposals on the CPU, as the representation for the | |
# masks is not efficient GPU-wise (possibly several small tensors for | |
# representing a single instance mask) | |
proposals = proposals.bbox.to(torch.device("cpu")) | |
for segmentation_mask, proposal in zip(segmentation_masks, proposals): | |
# crop the masks, resize them to the desired resolution and | |
# then convert them to the tensor representation, | |
# instead of the list representation that was used | |
cropped_mask = segmentation_mask.crop(proposal) | |
scaled_mask = cropped_mask.resize((M, M)) | |
mask = scaled_mask.convert(mode="mask") | |
masks.append(mask) | |
if len(masks) == 0: | |
return torch.empty(0, dtype=torch.float32, device=device) | |
return torch.stack(masks, dim=0).to(device, dtype=torch.float32) | |
class MaskRCNNLossComputation(object): | |
def __init__(self, proposal_matcher, discretization_size, vl_version=False): | |
""" | |
Arguments: | |
proposal_matcher (Matcher) | |
discretization_size (int) | |
""" | |
self.proposal_matcher = proposal_matcher | |
self.discretization_size = discretization_size | |
self.vl_version = vl_version | |
def match_targets_to_proposals(self, proposal, target): | |
match_quality_matrix = boxlist_iou(target, proposal) | |
matched_idxs = self.proposal_matcher(match_quality_matrix) | |
# Mask RCNN needs "labels" and "masks "fields for creating the targets | |
if self.vl_version: | |
target = target.copy_with_fields(["positive_map", "masks"]) | |
else: | |
target = target.copy_with_fields(["labels", "masks"]) | |
# get the targets corresponding GT for each proposal | |
# NB: need to clamp the indices because we can have a single | |
# GT in the image, and matched_idxs can be -2, which goes | |
# out of bounds | |
matched_targets = target[matched_idxs.clamp(min=0)] | |
matched_targets.add_field("matched_idxs", matched_idxs) | |
return matched_targets | |
def prepare_targets(self, proposals, targets): | |
labels = [] | |
masks = [] | |
positive_maps = [] | |
for proposals_per_image, targets_per_image in zip(proposals, targets): | |
matched_targets = self.match_targets_to_proposals(proposals_per_image, targets_per_image) | |
matched_idxs = matched_targets.get_field("matched_idxs") | |
if self.vl_version: | |
positive_maps_per_image = matched_targets.get_field("positive_map") | |
# this can probably be removed, but is left here for clarity | |
# and completeness | |
neg_inds = matched_idxs == Matcher.BELOW_LOW_THRESHOLD | |
positive_maps_per_image[neg_inds, :] = 0 | |
positive_maps.append(positive_maps_per_image) | |
# TODO: make sure for the softmax [NoObj] case | |
labels_per_image = positive_maps_per_image.sum(dim=-1) | |
labels_per_image = labels_per_image.to(dtype=torch.int64) | |
else: | |
labels_per_image = matched_targets.get_field("labels") | |
labels_per_image = labels_per_image.to(dtype=torch.int64) | |
# this can probably be removed, but is left here for clarity | |
# and completeness | |
neg_inds = matched_idxs == Matcher.BELOW_LOW_THRESHOLD | |
labels_per_image[neg_inds] = 0 | |
# mask scores are only computed on positive samples | |
positive_inds = torch.nonzero(labels_per_image > 0).squeeze(1) | |
segmentation_masks = matched_targets.get_field("masks") | |
segmentation_masks = segmentation_masks[positive_inds] | |
positive_proposals = proposals_per_image[positive_inds] | |
masks_per_image = project_masks_on_boxes(segmentation_masks, positive_proposals, self.discretization_size) | |
labels.append(labels_per_image) | |
masks.append(masks_per_image) | |
return labels, masks, positive_maps | |
def __call__(self, proposals, mask_logits, targets): | |
""" | |
Arguments: | |
proposals (list[BoxList]) | |
mask_logits (Tensor) | |
targets (list[BoxList]) | |
Return: | |
mask_loss (Tensor): scalar tensor containing the loss | |
""" | |
labels, mask_targets, positive_maps = self.prepare_targets(proposals, targets) | |
labels = cat(labels, dim=0) | |
mask_targets = cat(mask_targets, dim=0) | |
positive_inds = torch.nonzero(labels > 0).squeeze(1) | |
labels_pos = labels[positive_inds] | |
# TODO: a hack for binary mask head | |
labels_pos = (labels_pos > 0).to(dtype=torch.int64) | |
# torch.mean (in binary_cross_entropy_with_logits) doesn't | |
# accept empty tensors, so handle it separately | |
if mask_targets.numel() == 0: | |
return mask_logits.sum() * 0 | |
if self.vl_version: | |
positive_maps = cat(positive_maps, dim=0) | |
mask_logits_pos = [] | |
for positive_ind in positive_inds: | |
positive_map = positive_maps[positive_ind] | |
# TODO: make sure for the softmax [NoObj] case | |
mask_logit_pos = mask_logits[positive_ind][torch.nonzero(positive_map).squeeze(1)].mean( | |
dim=0, keepdim=True | |
) | |
mask_logits_pos.append(mask_logit_pos) | |
mask_logits_pos = cat(mask_logits_pos, dim=0) | |
mask_loss = F.binary_cross_entropy_with_logits(mask_logits_pos, mask_targets) | |
else: | |
mask_loss = F.binary_cross_entropy_with_logits(mask_logits[positive_inds, labels_pos], mask_targets) | |
return mask_loss | |
def make_roi_mask_loss_evaluator(cfg): | |
matcher = Matcher( | |
cfg.MODEL.ROI_HEADS.FG_IOU_THRESHOLD, | |
cfg.MODEL.ROI_HEADS.BG_IOU_THRESHOLD, | |
allow_low_quality_matches=False, | |
) | |
loss_evaluator = MaskRCNNLossComputation( | |
matcher, cfg.MODEL.ROI_MASK_HEAD.RESOLUTION, vl_version=cfg.MODEL.ROI_MASK_HEAD.PREDICTOR.startswith("VL") | |
) | |
return loss_evaluator | |