zdou0830's picture
desco
749745d
raw
history blame
7.36 kB
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
import torch
from torch.nn import functional as F
from maskrcnn_benchmark.layers import smooth_l1_loss
from maskrcnn_benchmark.modeling.matcher import Matcher
from maskrcnn_benchmark.structures.boxlist_ops import boxlist_iou
from maskrcnn_benchmark.modeling.utils import cat
def project_masks_on_boxes(segmentation_masks, proposals, discretization_size):
"""
Given segmentation masks and the bounding boxes corresponding
to the location of the masks in the image, this function
crops and resizes the masks in the position defined by the
boxes. This prepares the masks for them to be fed to the
loss computation as the targets.
Arguments:
segmentation_masks: an instance of SegmentationMask
proposals: an instance of BoxList
"""
masks = []
M = discretization_size
device = proposals.bbox.device
proposals = proposals.convert("xyxy")
assert segmentation_masks.size == proposals.size, "{}, {}".format(segmentation_masks, proposals)
# TODO put the proposals on the CPU, as the representation for the
# masks is not efficient GPU-wise (possibly several small tensors for
# representing a single instance mask)
proposals = proposals.bbox.to(torch.device("cpu"))
for segmentation_mask, proposal in zip(segmentation_masks, proposals):
# crop the masks, resize them to the desired resolution and
# then convert them to the tensor representation,
# instead of the list representation that was used
cropped_mask = segmentation_mask.crop(proposal)
scaled_mask = cropped_mask.resize((M, M))
mask = scaled_mask.convert(mode="mask")
masks.append(mask)
if len(masks) == 0:
return torch.empty(0, dtype=torch.float32, device=device)
return torch.stack(masks, dim=0).to(device, dtype=torch.float32)
class MaskRCNNLossComputation(object):
def __init__(self, proposal_matcher, discretization_size, vl_version=False):
"""
Arguments:
proposal_matcher (Matcher)
discretization_size (int)
"""
self.proposal_matcher = proposal_matcher
self.discretization_size = discretization_size
self.vl_version = vl_version
def match_targets_to_proposals(self, proposal, target):
match_quality_matrix = boxlist_iou(target, proposal)
matched_idxs = self.proposal_matcher(match_quality_matrix)
# Mask RCNN needs "labels" and "masks "fields for creating the targets
if self.vl_version:
target = target.copy_with_fields(["positive_map", "masks"])
else:
target = target.copy_with_fields(["labels", "masks"])
# get the targets corresponding GT for each proposal
# NB: need to clamp the indices because we can have a single
# GT in the image, and matched_idxs can be -2, which goes
# out of bounds
matched_targets = target[matched_idxs.clamp(min=0)]
matched_targets.add_field("matched_idxs", matched_idxs)
return matched_targets
def prepare_targets(self, proposals, targets):
labels = []
masks = []
positive_maps = []
for proposals_per_image, targets_per_image in zip(proposals, targets):
matched_targets = self.match_targets_to_proposals(proposals_per_image, targets_per_image)
matched_idxs = matched_targets.get_field("matched_idxs")
if self.vl_version:
positive_maps_per_image = matched_targets.get_field("positive_map")
# this can probably be removed, but is left here for clarity
# and completeness
neg_inds = matched_idxs == Matcher.BELOW_LOW_THRESHOLD
positive_maps_per_image[neg_inds, :] = 0
positive_maps.append(positive_maps_per_image)
# TODO: make sure for the softmax [NoObj] case
labels_per_image = positive_maps_per_image.sum(dim=-1)
labels_per_image = labels_per_image.to(dtype=torch.int64)
else:
labels_per_image = matched_targets.get_field("labels")
labels_per_image = labels_per_image.to(dtype=torch.int64)
# this can probably be removed, but is left here for clarity
# and completeness
neg_inds = matched_idxs == Matcher.BELOW_LOW_THRESHOLD
labels_per_image[neg_inds] = 0
# mask scores are only computed on positive samples
positive_inds = torch.nonzero(labels_per_image > 0).squeeze(1)
segmentation_masks = matched_targets.get_field("masks")
segmentation_masks = segmentation_masks[positive_inds]
positive_proposals = proposals_per_image[positive_inds]
masks_per_image = project_masks_on_boxes(segmentation_masks, positive_proposals, self.discretization_size)
labels.append(labels_per_image)
masks.append(masks_per_image)
return labels, masks, positive_maps
def __call__(self, proposals, mask_logits, targets):
"""
Arguments:
proposals (list[BoxList])
mask_logits (Tensor)
targets (list[BoxList])
Return:
mask_loss (Tensor): scalar tensor containing the loss
"""
labels, mask_targets, positive_maps = self.prepare_targets(proposals, targets)
labels = cat(labels, dim=0)
mask_targets = cat(mask_targets, dim=0)
positive_inds = torch.nonzero(labels > 0).squeeze(1)
labels_pos = labels[positive_inds]
# TODO: a hack for binary mask head
labels_pos = (labels_pos > 0).to(dtype=torch.int64)
# torch.mean (in binary_cross_entropy_with_logits) doesn't
# accept empty tensors, so handle it separately
if mask_targets.numel() == 0:
return mask_logits.sum() * 0
if self.vl_version:
positive_maps = cat(positive_maps, dim=0)
mask_logits_pos = []
for positive_ind in positive_inds:
positive_map = positive_maps[positive_ind]
# TODO: make sure for the softmax [NoObj] case
mask_logit_pos = mask_logits[positive_ind][torch.nonzero(positive_map).squeeze(1)].mean(
dim=0, keepdim=True
)
mask_logits_pos.append(mask_logit_pos)
mask_logits_pos = cat(mask_logits_pos, dim=0)
mask_loss = F.binary_cross_entropy_with_logits(mask_logits_pos, mask_targets)
else:
mask_loss = F.binary_cross_entropy_with_logits(mask_logits[positive_inds, labels_pos], mask_targets)
return mask_loss
def make_roi_mask_loss_evaluator(cfg):
matcher = Matcher(
cfg.MODEL.ROI_HEADS.FG_IOU_THRESHOLD,
cfg.MODEL.ROI_HEADS.BG_IOU_THRESHOLD,
allow_low_quality_matches=False,
)
loss_evaluator = MaskRCNNLossComputation(
matcher, cfg.MODEL.ROI_MASK_HEAD.RESOLUTION, vl_version=cfg.MODEL.ROI_MASK_HEAD.PREDICTOR.startswith("VL")
)
return loss_evaluator