Spaces:
Sleeping
Sleeping
import torch.nn as nn | |
import torch | |
from maskrcnn_benchmark.layers import swish | |
class BiFPN(nn.Module): | |
def __init__(self, in_channels_list, out_channels, first_time=False, epsilon=1e-4, attention=True): | |
super(BiFPN, self).__init__() | |
self.epsilon = epsilon | |
# Conv layers | |
self.conv6_up = nn.Sequential( | |
nn.Conv2d(out_channels, out_channels, 3, groups=out_channels, bias=False), | |
nn.Conv2d(out_channels, out_channels, 1), | |
nn.BatchNorm2d(out_channels, momentum=0.01, eps=1e-3), | |
) | |
self.conv5_up = nn.Sequential( | |
nn.Conv2d(out_channels, out_channels, 3, groups=out_channels, bias=False), | |
nn.Conv2d(out_channels, out_channels, 1), | |
nn.BatchNorm2d(out_channels, momentum=0.01, eps=1e-3), | |
) | |
self.conv4_up = nn.Sequential( | |
nn.Conv2d(out_channels, out_channels, 3, groups=out_channels, bias=False), | |
nn.Conv2d(out_channels, out_channels, 1), | |
nn.BatchNorm2d(out_channels, momentum=0.01, eps=1e-3), | |
) | |
self.conv3_up = nn.Sequential( | |
nn.Conv2d(out_channels, out_channels, 3, groups=out_channels, bias=False), | |
nn.Conv2d(out_channels, out_channels, 1), | |
nn.BatchNorm2d(out_channels, momentum=0.01, eps=1e-3), | |
) | |
self.conv4_down = nn.Sequential( | |
nn.Conv2d(out_channels, out_channels, 3, groups=out_channels, bias=False), | |
nn.Conv2d(out_channels, out_channels, 1), | |
nn.BatchNorm2d(out_channels, momentum=0.01, eps=1e-3), | |
) | |
self.conv5_down = nn.Sequential( | |
nn.Conv2d(out_channels, out_channels, 3, groups=out_channels, bias=False), | |
nn.Conv2d(out_channels, out_channels, 1), | |
nn.BatchNorm2d(out_channels, momentum=0.01, eps=1e-3), | |
) | |
self.conv6_down = nn.Sequential( | |
nn.Conv2d(out_channels, out_channels, 3, groups=out_channels, bias=False), | |
nn.Conv2d(out_channels, out_channels, 1), | |
nn.BatchNorm2d(out_channels, momentum=0.01, eps=1e-3), | |
) | |
self.conv7_down = nn.Sequential( | |
nn.Conv2d(out_channels, out_channels, 3, groups=out_channels, bias=False), | |
nn.Conv2d(out_channels, out_channels, 1), | |
nn.BatchNorm2d(out_channels, momentum=0.01, eps=1e-3), | |
) | |
# Feature scaling layers | |
self.p6_upsample = nn.Upsample(scale_factor=2, mode="nearest") | |
self.p5_upsample = nn.Upsample(scale_factor=2, mode="nearest") | |
self.p4_upsample = nn.Upsample(scale_factor=2, mode="nearest") | |
self.p3_upsample = nn.Upsample(scale_factor=2, mode="nearest") | |
self.p4_downsample = nn.MaxPool2d(3, 2) | |
self.p5_downsample = nn.MaxPool2d(3, 2) | |
self.p6_downsample = nn.MaxPool2d(3, 2) | |
self.p7_downsample = nn.MaxPool2d(3, 2) | |
self.swish = swish() | |
self.first_time = first_time | |
if self.first_time: | |
self.p5_down_channel = nn.Sequential( | |
nn.Conv2d(in_channels_list[2], out_channels, 1), | |
nn.BatchNorm2d(out_channels, momentum=0.01, eps=1e-3), | |
) | |
self.p4_down_channel = nn.Sequential( | |
nn.Conv2d(in_channels_list[1], out_channels, 1), | |
nn.BatchNorm2d(out_channels, momentum=0.01, eps=1e-3), | |
) | |
self.p3_down_channel = nn.Sequential( | |
nn.Conv2d(in_channels_list[0], out_channels, 1), | |
nn.BatchNorm2d(out_channels, momentum=0.01, eps=1e-3), | |
) | |
self.p5_to_p6 = nn.Sequential( | |
nn.Conv2d(in_channels_list[2], out_channels, 1), | |
nn.BatchNorm2d(out_channels, momentum=0.01, eps=1e-3), | |
nn.MaxPool2d(3, 2), | |
) | |
self.p6_to_p7 = nn.Sequential(nn.MaxPool2d(3, 2)) | |
self.p4_down_channel_2 = nn.Sequential( | |
nn.Conv2d(in_channels_list[1], out_channels, 1), | |
nn.BatchNorm2d(out_channels, momentum=0.01, eps=1e-3), | |
) | |
self.p5_down_channel_2 = nn.Sequential( | |
nn.Conv2d(in_channels_list[2], out_channels, 1), | |
nn.BatchNorm2d(out_channels, momentum=0.01, eps=1e-3), | |
) | |
# Weight | |
self.p6_w1 = nn.Parameter(torch.ones(2, dtype=torch.float32), requires_grad=True) | |
self.p6_w1_relu = nn.ReLU() | |
self.p5_w1 = nn.Parameter(torch.ones(2, dtype=torch.float32), requires_grad=True) | |
self.p5_w1_relu = nn.ReLU() | |
self.p4_w1 = nn.Parameter(torch.ones(2, dtype=torch.float32), requires_grad=True) | |
self.p4_w1_relu = nn.ReLU() | |
self.p3_w1 = nn.Parameter(torch.ones(2, dtype=torch.float32), requires_grad=True) | |
self.p3_w1_relu = nn.ReLU() | |
self.p4_w2 = nn.Parameter(torch.ones(3, dtype=torch.float32), requires_grad=True) | |
self.p4_w2_relu = nn.ReLU() | |
self.p5_w2 = nn.Parameter(torch.ones(3, dtype=torch.float32), requires_grad=True) | |
self.p5_w2_relu = nn.ReLU() | |
self.p6_w2 = nn.Parameter(torch.ones(3, dtype=torch.float32), requires_grad=True) | |
self.p6_w2_relu = nn.ReLU() | |
self.p7_w2 = nn.Parameter(torch.ones(2, dtype=torch.float32), requires_grad=True) | |
self.p7_w2_relu = nn.ReLU() | |
self.attention = attention | |
def forward(self, inputs): | |
""" | |
illustration of a minimal bifpn unit | |
P7_0 -------------------------> P7_2 --------> | |
|-------------| β | |
β | | |
P6_0 ---------> P6_1 ---------> P6_2 --------> | |
|-------------|--------------β β | |
β | | |
P5_0 ---------> P5_1 ---------> P5_2 --------> | |
|-------------|--------------β β | |
β | | |
P4_0 ---------> P4_1 ---------> P4_2 --------> | |
|-------------|--------------β β | |
|--------------β | | |
P3_0 -------------------------> P3_2 --------> | |
""" | |
# downsample channels using same-padding conv2d to target phase's if not the same | |
# judge: same phase as target, | |
# if same, pass; | |
# elif earlier phase, downsample to target phase's by pooling | |
# elif later phase, upsample to target phase's by nearest interpolation | |
if self.attention: | |
p3_out, p4_out, p5_out, p6_out, p7_out = self._forward_fast_attention(inputs) | |
else: | |
p3_out, p4_out, p5_out, p6_out, p7_out = self._forward(inputs) | |
return p3_out, p4_out, p5_out, p6_out, p7_out | |
def _forward_fast_attention(self, inputs): | |
if self.first_time: | |
p3, p4, p5 = inputs[-3:] | |
p6_in = self.p5_to_p6(p5) | |
p7_in = self.p6_to_p7(p6_in) | |
p3_in = self.p3_down_channel(p3) | |
p4_in = self.p4_down_channel(p4) | |
p5_in = self.p5_down_channel(p5) | |
else: | |
# P3_0, P4_0, P5_0, P6_0 and P7_0 | |
p3_in, p4_in, p5_in, p6_in, p7_in = inputs | |
# P7_0 to P7_2 | |
# Weights for P6_0 and P7_0 to P6_1 | |
p6_w1 = self.p6_w1_relu(self.p6_w1) | |
weight = p6_w1 / (torch.sum(p6_w1, dim=0) + self.epsilon) | |
# Connections for P6_0 and P7_0 to P6_1 respectively | |
p6_up = self.conv6_up(self.swish(weight[0] * p6_in + weight[1] * self.p6_upsample(p7_in))) | |
# Weights for P5_0 and P6_1 to P5_1 | |
p5_w1 = self.p5_w1_relu(self.p5_w1) | |
weight = p5_w1 / (torch.sum(p5_w1, dim=0) + self.epsilon) | |
# Connections for P5_0 and P6_1 to P5_1 respectively | |
p5_up = self.conv5_up(self.swish(weight[0] * p5_in + weight[1] * self.p5_upsample(p6_up))) | |
# Weights for P4_0 and P5_1 to P4_1 | |
p4_w1 = self.p4_w1_relu(self.p4_w1) | |
weight = p4_w1 / (torch.sum(p4_w1, dim=0) + self.epsilon) | |
# Connections for P4_0 and P5_1 to P4_1 respectively | |
p4_up = self.conv4_up(self.swish(weight[0] * p4_in + weight[1] * self.p4_upsample(p5_up))) | |
# Weights for P3_0 and P4_1 to P3_2 | |
p3_w1 = self.p3_w1_relu(self.p3_w1) | |
weight = p3_w1 / (torch.sum(p3_w1, dim=0) + self.epsilon) | |
# Connections for P3_0 and P4_1 to P3_2 respectively | |
p3_out = self.conv3_up(self.swish(weight[0] * p3_in + weight[1] * self.p3_upsample(p4_up))) | |
if self.first_time: | |
p4_in = self.p4_down_channel_2(p4) | |
p5_in = self.p5_down_channel_2(p5) | |
# Weights for P4_0, P4_1 and P3_2 to P4_2 | |
p4_w2 = self.p4_w2_relu(self.p4_w2) | |
weight = p4_w2 / (torch.sum(p4_w2, dim=0) + self.epsilon) | |
# Connections for P4_0, P4_1 and P3_2 to P4_2 respectively | |
p4_out = self.conv4_down( | |
self.swish(weight[0] * p4_in + weight[1] * p4_up + weight[2] * self.p4_downsample(p3_out)) | |
) | |
# Weights for P5_0, P5_1 and P4_2 to P5_2 | |
p5_w2 = self.p5_w2_relu(self.p5_w2) | |
weight = p5_w2 / (torch.sum(p5_w2, dim=0) + self.epsilon) | |
# Connections for P5_0, P5_1 and P4_2 to P5_2 respectively | |
p5_out = self.conv5_down( | |
self.swish(weight[0] * p5_in + weight[1] * p5_up + weight[2] * self.p5_downsample(p4_out)) | |
) | |
# Weights for P6_0, P6_1 and P5_2 to P6_2 | |
p6_w2 = self.p6_w2_relu(self.p6_w2) | |
weight = p6_w2 / (torch.sum(p6_w2, dim=0) + self.epsilon) | |
# Connections for P6_0, P6_1 and P5_2 to P6_2 respectively | |
p6_out = self.conv6_down( | |
self.swish(weight[0] * p6_in + weight[1] * p6_up + weight[2] * self.p6_downsample(p5_out)) | |
) | |
# Weights for P7_0 and P6_2 to P7_2 | |
p7_w2 = self.p7_w2_relu(self.p7_w2) | |
weight = p7_w2 / (torch.sum(p7_w2, dim=0) + self.epsilon) | |
# Connections for P7_0 and P6_2 to P7_2 | |
p7_out = self.conv7_down(self.swish(weight[0] * p7_in + weight[1] * self.p7_downsample(p6_out))) | |
return p3_out, p4_out, p5_out, p6_out, p7_out | |
def _forward(self, inputs): | |
if self.first_time: | |
p3, p4, p5 = inputs | |
p6_in = self.p5_to_p6(p5) | |
p7_in = self.p6_to_p7(p6_in) | |
p3_in = self.p3_down_channel(p3) | |
p4_in = self.p4_down_channel(p4) | |
p5_in = self.p5_down_channel(p5) | |
else: | |
# P3_0, P4_0, P5_0, P6_0 and P7_0 | |
p3_in, p4_in, p5_in, p6_in, p7_in = inputs | |
# P7_0 to P7_2 | |
# Connections for P6_0 and P7_0 to P6_1 respectively | |
p6_up = self.conv6_up(self.swish(p6_in + self.p6_upsample(p7_in))) | |
# Connections for P5_0 and P6_1 to P5_1 respectively | |
p5_up = self.conv5_up(self.swish(p5_in + self.p5_upsample(p6_up))) | |
# Connections for P4_0 and P5_1 to P4_1 respectively | |
p4_up = self.conv4_up(self.swish(p4_in + self.p4_upsample(p5_up))) | |
# Connections for P3_0 and P4_1 to P3_2 respectively | |
p3_out = self.conv3_up(self.swish(p3_in + self.p3_upsample(p4_up))) | |
if self.first_time: | |
p4_in = self.p4_down_channel_2(p4) | |
p5_in = self.p5_down_channel_2(p5) | |
# Connections for P4_0, P4_1 and P3_2 to P4_2 respectively | |
p4_out = self.conv4_down(self.swish(p4_in + p4_up + self.p4_downsample(p3_out))) | |
# Connections for P5_0, P5_1 and P4_2 to P5_2 respectively | |
p5_out = self.conv5_down(self.swish(p5_in + p5_up + self.p5_downsample(p4_out))) | |
# Connections for P6_0, P6_1 and P5_2 to P6_2 respectively | |
p6_out = self.conv6_down(self.swish(p6_in + p6_up + self.p6_downsample(p5_out))) | |
# Connections for P7_0 and P6_2 to P7_2 | |
p7_out = self.conv7_down(self.swish(p7_in + self.p7_downsample(p6_out))) | |
return p3_out, p4_out, p5_out, p6_out, p7_out | |