zdou0830's picture
desco
749745d
raw
history blame
16 kB
import torch
import torch.distributed as dist
import time
from torchvision.ops import nms
import random
import numpy as np
from PIL import Image, ImageDraw
import pdb
from maskrcnn_benchmark.structures.bounding_box import BoxList
from .modulated_coco import ConvertCocoPolysToMask
from .tsv import ODTSVDataset, TSVYamlDataset
from .od_to_grounding import sanity_check_target_after_processing
from maskrcnn_benchmark.data.datasets._caption_aug import CaptionAugmentation
from collections import defaultdict
class CaptionTSV(TSVYamlDataset):
def __init__(
self,
yaml_file,
transforms,
return_tokens,
return_masks,
tokenizer,
caption_min_box=1,
replace_clean_label=False,
further_screen=False,
caption_conf=0.5,
caption_nms=-1,
pack_random_caption_number=0,
inference_caption=False,
sample_negative_for_grounding_data=-1,
random_pack_prob=-1.0,
no_random_pack_probability=0.0,
safeguard_positive_caption=True,
mlm_obj_for_only_positive=False,
caption_format_version="v1",
local_debug=False,
max_query_len=256,
cc_caption_augmentation_version=None,
caption_vocab_file=None,
**kwargs
):
super(CaptionTSV, self).__init__(yaml_file, None, replace_clean_label)
self.yaml_file = yaml_file
self._transforms = transforms
self.max_query_len = 225
self.prepare = ConvertCocoPolysToMask(
return_masks=return_masks, return_tokens=return_tokens, tokenizer=tokenizer, max_query_len=max_query_len
)
self.tokenizer = tokenizer
self.caption_min_box = caption_min_box
self.replace_clean_label = replace_clean_label
self.further_screen = further_screen
self.pack_random_caption_number = pack_random_caption_number
self.caption_format_version = caption_format_version
self.caption_conf = caption_conf
self.caption_nms = caption_nms
self.inference_caption = inference_caption
self.sample_negative_for_grounding_data = sample_negative_for_grounding_data
self.random_pack_prob = random_pack_prob
self.no_random_pack_probability = no_random_pack_probability
self.safeguard_positive_caption = safeguard_positive_caption
self.mlm_obj_for_only_positive = mlm_obj_for_only_positive
try:
self.rank = dist.get_rank()
except:
self.rank = 0
self.caption_augmentation_version = cc_caption_augmentation_version
if self.caption_augmentation_version is not None:
self.caption_augmentation = CaptionAugmentation(
self.caption_augmentation_version,
tokenizer,
caption_vocab_file=caption_vocab_file
)
def __len__(self):
return super(CaptionTSV, self).__len__()
def pack_caption(self, positive_caption, negative_captions, original_tokens_positive):
if len(negative_captions) == 0:
return positive_caption, original_tokens_positive, [(0, len(positive_caption))]
if self.safeguard_positive_caption:
length_of_each_caption = []
for caption in negative_captions + [positive_caption]:
tokenized = self.tokenizer(caption, return_tensors="pt")
length_of_each_caption.append(tokenized.input_ids.size(-1))
max_length = self.max_query_len - length_of_each_caption[-1]
indexes = list(range(len(negative_captions)))
random.shuffle(indexes)
new_caption_list = [positive_caption]
for i in indexes:
if length_of_each_caption[i] < max_length:
new_caption_list.append(negative_captions[i])
max_length -= length_of_each_caption[i]
else:
new_caption_list = [positive_caption] + negative_captions
random.shuffle(new_caption_list)
new_caption = ""
for i in new_caption_list:
if i == positive_caption:
start_position = len(new_caption)
new_caption += i
if not i.endswith("."):
new_caption += "."
new_caption += " "
# shift the token positions the boxes are aligned to
for index, i in enumerate(original_tokens_positive):
original_tokens_positive[index] = [tuple(j) for j in i]
for i in original_tokens_positive:
for index, j in enumerate(i):
i[index] = (j[0] + start_position, j[1] + start_position)
return new_caption, original_tokens_positive, [(start_position, start_position + len(positive_caption))]
def __get_negative_captions__(self, idx, negative_size=7):
negative_captions = []
for i in range(negative_size):
img, anno, _, scale = super(CaptionTSV, self).__getitem__(np.random.choice(len(self)))
caption = anno["caption"]
negative_captions.append(caption)
return negative_captions
def target_transpose_in(self, anno):
# for the target from "caption", we need to transpose to box format
new_target = []
for box in range(len(anno["bboxes"])):
new_box = {}
new_box["tokens_positive"] = anno["tokens_positive"][box]
new_box["nouns"] = anno["all_nounds_in_vocab"][box]
new_box["bbox"] = anno["bboxes"][box]
new_target.append(new_box)
return new_target
def target_transpose_out(self, target):
# for the target from "caption", we need to transpose to box format
new_target = defaultdict(list)
for box in target:
new_target["bboxes"].append(box["bbox"])
new_target["tokens_positive"].append(box["tokens_positive"])
if "spans_positive" in box:
new_target["spans_positive"].append(box["spans_positive"])
return new_target
def __getitem__(self, idx):
try:
img, anno, _, scale = super(CaptionTSV, self).__getitem__(idx)
if self.inference_caption:
caption = None
if isinstance(anno, list):
caption = anno[0]["caption"] # inference mode for bing
anno = []
elif len(anno) == 1:
caption = anno["caption"] # inference mode for googlecc
anno = []
else:
caption = " ".join(anno["captions"])
anno = []
else:
"""
An example
{'img_h': 1154, 'img_w': 1600, 'caption': 'xxx', 'tokens_positive': [[[47, 50], [51, 53], [54, 59]], [[32, 35], [36, 41]], [[32, 35], [36, 41]], [[0, 3], [3, 6], [6, 10], [11, 16], [17, 19], [20, 23]], [[32, 35], [36, 41]], [[32, 35], [36, 41]]], 'bboxes': [[7.344961166381836, 10.479412078857422, 1592.2679443359375, 1090.0028076171875], [950.32861328125, 346.572021484375, 1333.2373046875, 679.3215942382812], [927.44140625, 342.7712707519531, 1389.833984375, 719.5758666992188], [90.48786163330078, 363.67572021484375, 1381.8631591796875, 1078.687744140625], [122.84217071533203, 422.6786193847656, 507.845703125, 667.2651977539062], [80.62384033203125, 416.500244140625, 563.1666259765625, 734.603271484375]], 'scores': [0.7966700196266174, 0.8952182531356812, 0.8186006546020508, 0.9995516538619995, 0.8021856546401978, 0.8923134803771973]}
"""
if len(anno["bboxes"]) < self.caption_min_box: # Retry triggered!
return self[np.random.choice(len(self))]
if self.caption_format_version == "v2":
anno = self.convert_anno_from_v2_to_v1(anno)
if self.further_screen:
conf = self.caption_conf
nms_thre = self.caption_nms
bboxes = torch.as_tensor(anno["bboxes"]).float()
scores = torch.as_tensor(anno["scores"])
tokens_positive = anno["tokens_positive"]
if "all_nounds_in_vocab" in anno:
all_nounds_in_vocab = anno["all_nounds_in_vocab"]
else:
all_nounds_in_vocab = []
# print("\n\n\n\n tokens_positive in original data", tokens_positive)
keep = scores > conf
scores = scores[keep]
bboxes = bboxes[keep]
tokens_positive = [i for index, i in enumerate(tokens_positive) if keep[index]]
all_nounds_in_vocab = [i for index, i in enumerate(all_nounds_in_vocab) if keep[index]]
assert len(tokens_positive) == len(bboxes) == len(scores)
if len(bboxes) < self.caption_min_box: # Retry triggered!
return self[np.random.choice(len(self))]
if nms_thre > 0:
keep = nms(boxes=bboxes, scores=scores, iou_threshold=nms_thre)
scores = scores[keep]
bboxes = bboxes[keep]
tokens_positive = [tokens_positive[i] for i in keep]
assert len(tokens_positive) == len(bboxes) == len(scores)
# Write back
anno["bboxes"] = bboxes.tolist()
anno["scores"] = scores.tolist()
anno["tokens_positive"] = tokens_positive
anno["all_nounds_in_vocab"] = all_nounds_in_vocab
if len(anno["bboxes"]) < self.caption_min_box: # Retry triggered!
return self[np.random.choice(len(self))]
if self.caption_augmentation_version is not None:
caption, new_anno, spans = self.caption_augmentation(
anno["caption"],
self.target_transpose_in(anno),
gpt3_outputs = anno.get("gpt3_outputs", None))
anno.update(self.target_transpose_out(new_anno))
anno["caption"] = caption
do_neg_aug = False
else:
do_neg_aug = True
spans = None
boxes = torch.as_tensor(anno["bboxes"])
caption = anno["caption"]
target = BoxList(boxes, (anno["img_w"], anno["img_h"]), mode="xyxy")
target = target.clip_to_image(remove_empty=True)
if spans is not None:
target.add_field("spans", spans) # add spans to target
#pdb.set_trace()
# print("original caption", caption)
empty_everything = False
if self.sample_negative_for_grounding_data != -1:
if random.random() < self.sample_negative_for_grounding_data:
empty_everything = True
if empty_everything:
caption = self.__get_negative_captions__(idx, negative_size=1)[0]
if self.pack_random_caption_number != 0 and do_neg_aug:
if self.random_pack_prob != -1.0:
if random.random() < self.no_random_pack_probability:
negative_pack_number = 0
elif random.random() < self.random_pack_prob:
negative_pack_number = self.pack_random_caption_number
else:
negative_pack_number = np.random.choice(self.pack_random_caption_number)
else:
negative_pack_number = self.pack_random_caption_number
negative_captions = self.__get_negative_captions__(idx, negative_size=negative_pack_number)
caption, anno["tokens_positive"], greenlight_span_for_masked_lm_objective = self.pack_caption(
caption, negative_captions, anno["tokens_positive"]
)
else:
greenlight_span_for_masked_lm_objective = [(0, len(caption))]
if not self.mlm_obj_for_only_positive:
greenlight_span_for_masked_lm_objective = [(0, len(caption))]
new_anno = []
areas = target.area()
for i in range(len(target)):
new_anno_i = {}
new_anno_i["area"] = areas[i]
new_anno_i["iscrowd"] = 0
new_anno_i["image_id"] = idx
new_anno_i["category_id"] = 1 # following vg and others
new_anno_i["id"] = None
new_anno_i["bbox"] = target.bbox[i].numpy().tolist()
new_anno_i["tokens_positive"] = anno["tokens_positive"][i]
if "spans_positive" in anno:
new_anno_i["spans_positive"] = anno["spans_positive"][i]
new_anno.append(new_anno_i)
# except:
# return self[np.random.choice(len(self))]
anno = new_anno
if empty_everything:
anno = []
annotations = {"image_id": idx, "annotations": anno, "caption": caption}
annotations["greenlight_span_for_masked_lm_objective"] = greenlight_span_for_masked_lm_objective
if "spans" in target.extra_fields:
annotations["spans"] = target.extra_fields["spans"]
if not isinstance(annotations["spans"], list):
annotations["spans"] = annotations["spans"].tolist()
img, annotations = self.prepare(img, annotations, box_format="xyxy")
if self._transforms is not None:
img, target = self._transforms(img, target)
# add additional property
for ann in annotations:
target.add_field(ann, annotations[ann])
except:
print("Outter Retry triggered!!")
return self[np.random.choice(len(self))]
return img, target, idx
def convert_anno_from_v2_to_v1(self, anno):
flatterned_bboxes = []
flatterned_tokens_positive = []
flatterned_bboxes_scores = []
flatterned_nouns = []
for i in range(len(anno["bboxes"])):
# i is the index for entity
for j in range(len(anno["bboxes"][i])):
# j is the index for each box
flatterned_bboxes.append(anno["bboxes"][i][j])
flatterned_tokens_positive.append(
anno["tokens_positive"][i]
) # Assume this box corresponds to all the token_spans for this entity
if "all_nounds_in_vocab" in anno:
flatterned_nouns.append(anno["all_nounds_in_vocab"][i])
flatterned_bboxes_scores.append(anno["scores"][i][j])
anno["bboxes"] = flatterned_bboxes
anno["tokens_positive"] = flatterned_tokens_positive
anno["scores"] = flatterned_bboxes_scores
if "all_nounds_in_vocab" in anno:
anno["all_nounds_in_vocab"] = flatterned_nouns
return anno
def get_raw_image(self, idx):
image, *_ = super(CaptionTSV, self).__getitem__(idx)
return image
def get_img_id(self, idx):
line_no = self.get_line_no(idx)
if self.label_tsv is not None:
row = self.label_tsv.seek(line_no)
img_id = row[0]
return img_id