Spaces:
Sleeping
Sleeping
import torch | |
import torch.distributed as dist | |
import time | |
from torchvision.ops import nms | |
import random | |
import numpy as np | |
from PIL import Image, ImageDraw | |
import pdb | |
from maskrcnn_benchmark.structures.bounding_box import BoxList | |
from .modulated_coco import ConvertCocoPolysToMask | |
from .tsv import ODTSVDataset, TSVYamlDataset | |
from .od_to_grounding import sanity_check_target_after_processing | |
from maskrcnn_benchmark.data.datasets._caption_aug import CaptionAugmentation | |
from collections import defaultdict | |
class CaptionTSV(TSVYamlDataset): | |
def __init__( | |
self, | |
yaml_file, | |
transforms, | |
return_tokens, | |
return_masks, | |
tokenizer, | |
caption_min_box=1, | |
replace_clean_label=False, | |
further_screen=False, | |
caption_conf=0.5, | |
caption_nms=-1, | |
pack_random_caption_number=0, | |
inference_caption=False, | |
sample_negative_for_grounding_data=-1, | |
random_pack_prob=-1.0, | |
no_random_pack_probability=0.0, | |
safeguard_positive_caption=True, | |
mlm_obj_for_only_positive=False, | |
caption_format_version="v1", | |
local_debug=False, | |
max_query_len=256, | |
cc_caption_augmentation_version=None, | |
caption_vocab_file=None, | |
**kwargs | |
): | |
super(CaptionTSV, self).__init__(yaml_file, None, replace_clean_label) | |
self.yaml_file = yaml_file | |
self._transforms = transforms | |
self.max_query_len = 225 | |
self.prepare = ConvertCocoPolysToMask( | |
return_masks=return_masks, return_tokens=return_tokens, tokenizer=tokenizer, max_query_len=max_query_len | |
) | |
self.tokenizer = tokenizer | |
self.caption_min_box = caption_min_box | |
self.replace_clean_label = replace_clean_label | |
self.further_screen = further_screen | |
self.pack_random_caption_number = pack_random_caption_number | |
self.caption_format_version = caption_format_version | |
self.caption_conf = caption_conf | |
self.caption_nms = caption_nms | |
self.inference_caption = inference_caption | |
self.sample_negative_for_grounding_data = sample_negative_for_grounding_data | |
self.random_pack_prob = random_pack_prob | |
self.no_random_pack_probability = no_random_pack_probability | |
self.safeguard_positive_caption = safeguard_positive_caption | |
self.mlm_obj_for_only_positive = mlm_obj_for_only_positive | |
try: | |
self.rank = dist.get_rank() | |
except: | |
self.rank = 0 | |
self.caption_augmentation_version = cc_caption_augmentation_version | |
if self.caption_augmentation_version is not None: | |
self.caption_augmentation = CaptionAugmentation( | |
self.caption_augmentation_version, | |
tokenizer, | |
caption_vocab_file=caption_vocab_file | |
) | |
def __len__(self): | |
return super(CaptionTSV, self).__len__() | |
def pack_caption(self, positive_caption, negative_captions, original_tokens_positive): | |
if len(negative_captions) == 0: | |
return positive_caption, original_tokens_positive, [(0, len(positive_caption))] | |
if self.safeguard_positive_caption: | |
length_of_each_caption = [] | |
for caption in negative_captions + [positive_caption]: | |
tokenized = self.tokenizer(caption, return_tensors="pt") | |
length_of_each_caption.append(tokenized.input_ids.size(-1)) | |
max_length = self.max_query_len - length_of_each_caption[-1] | |
indexes = list(range(len(negative_captions))) | |
random.shuffle(indexes) | |
new_caption_list = [positive_caption] | |
for i in indexes: | |
if length_of_each_caption[i] < max_length: | |
new_caption_list.append(negative_captions[i]) | |
max_length -= length_of_each_caption[i] | |
else: | |
new_caption_list = [positive_caption] + negative_captions | |
random.shuffle(new_caption_list) | |
new_caption = "" | |
for i in new_caption_list: | |
if i == positive_caption: | |
start_position = len(new_caption) | |
new_caption += i | |
if not i.endswith("."): | |
new_caption += "." | |
new_caption += " " | |
# shift the token positions the boxes are aligned to | |
for index, i in enumerate(original_tokens_positive): | |
original_tokens_positive[index] = [tuple(j) for j in i] | |
for i in original_tokens_positive: | |
for index, j in enumerate(i): | |
i[index] = (j[0] + start_position, j[1] + start_position) | |
return new_caption, original_tokens_positive, [(start_position, start_position + len(positive_caption))] | |
def __get_negative_captions__(self, idx, negative_size=7): | |
negative_captions = [] | |
for i in range(negative_size): | |
img, anno, _, scale = super(CaptionTSV, self).__getitem__(np.random.choice(len(self))) | |
caption = anno["caption"] | |
negative_captions.append(caption) | |
return negative_captions | |
def target_transpose_in(self, anno): | |
# for the target from "caption", we need to transpose to box format | |
new_target = [] | |
for box in range(len(anno["bboxes"])): | |
new_box = {} | |
new_box["tokens_positive"] = anno["tokens_positive"][box] | |
new_box["nouns"] = anno["all_nounds_in_vocab"][box] | |
new_box["bbox"] = anno["bboxes"][box] | |
new_target.append(new_box) | |
return new_target | |
def target_transpose_out(self, target): | |
# for the target from "caption", we need to transpose to box format | |
new_target = defaultdict(list) | |
for box in target: | |
new_target["bboxes"].append(box["bbox"]) | |
new_target["tokens_positive"].append(box["tokens_positive"]) | |
if "spans_positive" in box: | |
new_target["spans_positive"].append(box["spans_positive"]) | |
return new_target | |
def __getitem__(self, idx): | |
try: | |
img, anno, _, scale = super(CaptionTSV, self).__getitem__(idx) | |
if self.inference_caption: | |
caption = None | |
if isinstance(anno, list): | |
caption = anno[0]["caption"] # inference mode for bing | |
anno = [] | |
elif len(anno) == 1: | |
caption = anno["caption"] # inference mode for googlecc | |
anno = [] | |
else: | |
caption = " ".join(anno["captions"]) | |
anno = [] | |
else: | |
""" | |
An example | |
{'img_h': 1154, 'img_w': 1600, 'caption': 'xxx', 'tokens_positive': [[[47, 50], [51, 53], [54, 59]], [[32, 35], [36, 41]], [[32, 35], [36, 41]], [[0, 3], [3, 6], [6, 10], [11, 16], [17, 19], [20, 23]], [[32, 35], [36, 41]], [[32, 35], [36, 41]]], 'bboxes': [[7.344961166381836, 10.479412078857422, 1592.2679443359375, 1090.0028076171875], [950.32861328125, 346.572021484375, 1333.2373046875, 679.3215942382812], [927.44140625, 342.7712707519531, 1389.833984375, 719.5758666992188], [90.48786163330078, 363.67572021484375, 1381.8631591796875, 1078.687744140625], [122.84217071533203, 422.6786193847656, 507.845703125, 667.2651977539062], [80.62384033203125, 416.500244140625, 563.1666259765625, 734.603271484375]], 'scores': [0.7966700196266174, 0.8952182531356812, 0.8186006546020508, 0.9995516538619995, 0.8021856546401978, 0.8923134803771973]} | |
""" | |
if len(anno["bboxes"]) < self.caption_min_box: # Retry triggered! | |
return self[np.random.choice(len(self))] | |
if self.caption_format_version == "v2": | |
anno = self.convert_anno_from_v2_to_v1(anno) | |
if self.further_screen: | |
conf = self.caption_conf | |
nms_thre = self.caption_nms | |
bboxes = torch.as_tensor(anno["bboxes"]).float() | |
scores = torch.as_tensor(anno["scores"]) | |
tokens_positive = anno["tokens_positive"] | |
if "all_nounds_in_vocab" in anno: | |
all_nounds_in_vocab = anno["all_nounds_in_vocab"] | |
else: | |
all_nounds_in_vocab = [] | |
# print("\n\n\n\n tokens_positive in original data", tokens_positive) | |
keep = scores > conf | |
scores = scores[keep] | |
bboxes = bboxes[keep] | |
tokens_positive = [i for index, i in enumerate(tokens_positive) if keep[index]] | |
all_nounds_in_vocab = [i for index, i in enumerate(all_nounds_in_vocab) if keep[index]] | |
assert len(tokens_positive) == len(bboxes) == len(scores) | |
if len(bboxes) < self.caption_min_box: # Retry triggered! | |
return self[np.random.choice(len(self))] | |
if nms_thre > 0: | |
keep = nms(boxes=bboxes, scores=scores, iou_threshold=nms_thre) | |
scores = scores[keep] | |
bboxes = bboxes[keep] | |
tokens_positive = [tokens_positive[i] for i in keep] | |
assert len(tokens_positive) == len(bboxes) == len(scores) | |
# Write back | |
anno["bboxes"] = bboxes.tolist() | |
anno["scores"] = scores.tolist() | |
anno["tokens_positive"] = tokens_positive | |
anno["all_nounds_in_vocab"] = all_nounds_in_vocab | |
if len(anno["bboxes"]) < self.caption_min_box: # Retry triggered! | |
return self[np.random.choice(len(self))] | |
if self.caption_augmentation_version is not None: | |
caption, new_anno, spans = self.caption_augmentation( | |
anno["caption"], | |
self.target_transpose_in(anno), | |
gpt3_outputs = anno.get("gpt3_outputs", None)) | |
anno.update(self.target_transpose_out(new_anno)) | |
anno["caption"] = caption | |
do_neg_aug = False | |
else: | |
do_neg_aug = True | |
spans = None | |
boxes = torch.as_tensor(anno["bboxes"]) | |
caption = anno["caption"] | |
target = BoxList(boxes, (anno["img_w"], anno["img_h"]), mode="xyxy") | |
target = target.clip_to_image(remove_empty=True) | |
if spans is not None: | |
target.add_field("spans", spans) # add spans to target | |
#pdb.set_trace() | |
# print("original caption", caption) | |
empty_everything = False | |
if self.sample_negative_for_grounding_data != -1: | |
if random.random() < self.sample_negative_for_grounding_data: | |
empty_everything = True | |
if empty_everything: | |
caption = self.__get_negative_captions__(idx, negative_size=1)[0] | |
if self.pack_random_caption_number != 0 and do_neg_aug: | |
if self.random_pack_prob != -1.0: | |
if random.random() < self.no_random_pack_probability: | |
negative_pack_number = 0 | |
elif random.random() < self.random_pack_prob: | |
negative_pack_number = self.pack_random_caption_number | |
else: | |
negative_pack_number = np.random.choice(self.pack_random_caption_number) | |
else: | |
negative_pack_number = self.pack_random_caption_number | |
negative_captions = self.__get_negative_captions__(idx, negative_size=negative_pack_number) | |
caption, anno["tokens_positive"], greenlight_span_for_masked_lm_objective = self.pack_caption( | |
caption, negative_captions, anno["tokens_positive"] | |
) | |
else: | |
greenlight_span_for_masked_lm_objective = [(0, len(caption))] | |
if not self.mlm_obj_for_only_positive: | |
greenlight_span_for_masked_lm_objective = [(0, len(caption))] | |
new_anno = [] | |
areas = target.area() | |
for i in range(len(target)): | |
new_anno_i = {} | |
new_anno_i["area"] = areas[i] | |
new_anno_i["iscrowd"] = 0 | |
new_anno_i["image_id"] = idx | |
new_anno_i["category_id"] = 1 # following vg and others | |
new_anno_i["id"] = None | |
new_anno_i["bbox"] = target.bbox[i].numpy().tolist() | |
new_anno_i["tokens_positive"] = anno["tokens_positive"][i] | |
if "spans_positive" in anno: | |
new_anno_i["spans_positive"] = anno["spans_positive"][i] | |
new_anno.append(new_anno_i) | |
# except: | |
# return self[np.random.choice(len(self))] | |
anno = new_anno | |
if empty_everything: | |
anno = [] | |
annotations = {"image_id": idx, "annotations": anno, "caption": caption} | |
annotations["greenlight_span_for_masked_lm_objective"] = greenlight_span_for_masked_lm_objective | |
if "spans" in target.extra_fields: | |
annotations["spans"] = target.extra_fields["spans"] | |
if not isinstance(annotations["spans"], list): | |
annotations["spans"] = annotations["spans"].tolist() | |
img, annotations = self.prepare(img, annotations, box_format="xyxy") | |
if self._transforms is not None: | |
img, target = self._transforms(img, target) | |
# add additional property | |
for ann in annotations: | |
target.add_field(ann, annotations[ann]) | |
except: | |
print("Outter Retry triggered!!") | |
return self[np.random.choice(len(self))] | |
return img, target, idx | |
def convert_anno_from_v2_to_v1(self, anno): | |
flatterned_bboxes = [] | |
flatterned_tokens_positive = [] | |
flatterned_bboxes_scores = [] | |
flatterned_nouns = [] | |
for i in range(len(anno["bboxes"])): | |
# i is the index for entity | |
for j in range(len(anno["bboxes"][i])): | |
# j is the index for each box | |
flatterned_bboxes.append(anno["bboxes"][i][j]) | |
flatterned_tokens_positive.append( | |
anno["tokens_positive"][i] | |
) # Assume this box corresponds to all the token_spans for this entity | |
if "all_nounds_in_vocab" in anno: | |
flatterned_nouns.append(anno["all_nounds_in_vocab"][i]) | |
flatterned_bboxes_scores.append(anno["scores"][i][j]) | |
anno["bboxes"] = flatterned_bboxes | |
anno["tokens_positive"] = flatterned_tokens_positive | |
anno["scores"] = flatterned_bboxes_scores | |
if "all_nounds_in_vocab" in anno: | |
anno["all_nounds_in_vocab"] = flatterned_nouns | |
return anno | |
def get_raw_image(self, idx): | |
image, *_ = super(CaptionTSV, self).__getitem__(idx) | |
return image | |
def get_img_id(self, idx): | |
line_no = self.get_line_no(idx) | |
if self.label_tsv is not None: | |
row = self.label_tsv.seek(line_no) | |
img_id = row[0] | |
return img_id | |