Spaces:
Sleeping
Sleeping
import numpy as np | |
import torch | |
import torch.nn as nn | |
from collections import OrderedDict | |
def _remove_bn_statics(state_dict): | |
layer_keys = sorted(state_dict.keys()) | |
remove_list = [] | |
for key in layer_keys: | |
if "running_mean" in key or "running_var" in key or "num_batches_tracked" in key: | |
remove_list.append(key) | |
for key in remove_list: | |
del state_dict[key] | |
return state_dict | |
def _rename_conv_weights_for_deformable_conv_layers(state_dict, cfg): | |
import re | |
layer_keys = sorted(state_dict.keys()) | |
for ix, stage_with_dcn in enumerate(cfg.MODEL.RESNETS.STAGE_WITH_DCN, 1): | |
if not stage_with_dcn: | |
continue | |
for old_key in layer_keys: | |
pattern = ".*layer{}.*conv2.*".format(ix) | |
r = re.match(pattern, old_key) | |
if r is None: | |
continue | |
for param in ["weight", "bias"]: | |
if old_key.find(param) is -1: | |
continue | |
if "unit01" in old_key: | |
continue | |
new_key = old_key.replace("conv2.{}".format(param), "conv2.conv.{}".format(param)) | |
print("pattern: {}, old_key: {}, new_key: {}".format(pattern, old_key, new_key)) | |
state_dict[new_key] = state_dict[old_key] | |
del state_dict[old_key] | |
return state_dict | |
def load_pretrain_format(cfg, f): | |
model = torch.load(f) | |
model = _remove_bn_statics(model) | |
model = _rename_conv_weights_for_deformable_conv_layers(model, cfg) | |
return dict(model=model) | |