Spaces:
Sleeping
Sleeping
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. | |
import math | |
import torch | |
class BoxCoder(object): | |
""" | |
This class encodes and decodes a set of bounding boxes into | |
the representation used for training the regressors. | |
""" | |
def __init__(self, weights, bbox_xform_clip=math.log(1000.0 / 16)): | |
""" | |
Arguments: | |
weights (4-element tuple) | |
bbox_xform_clip (float) | |
""" | |
self.weights = weights | |
self.bbox_xform_clip = bbox_xform_clip | |
def encode(self, reference_boxes, proposals): | |
""" | |
Encode a set of proposals with respect to some | |
reference boxes | |
Arguments: | |
reference_boxes (Tensor): reference boxes | |
proposals (Tensor): boxes to be encoded | |
""" | |
TO_REMOVE = 1 # TODO remove | |
ex_widths = proposals[:, 2] - proposals[:, 0] + TO_REMOVE | |
ex_heights = proposals[:, 3] - proposals[:, 1] + TO_REMOVE | |
ex_ctr_x = proposals[:, 0] + 0.5 * ex_widths | |
ex_ctr_y = proposals[:, 1] + 0.5 * ex_heights | |
gt_widths = reference_boxes[:, 2] - reference_boxes[:, 0] + TO_REMOVE | |
gt_heights = reference_boxes[:, 3] - reference_boxes[:, 1] + TO_REMOVE | |
gt_ctr_x = reference_boxes[:, 0] + 0.5 * gt_widths | |
gt_ctr_y = reference_boxes[:, 1] + 0.5 * gt_heights | |
wx, wy, ww, wh = self.weights | |
targets_dx = wx * (gt_ctr_x - ex_ctr_x) / ex_widths | |
targets_dy = wy * (gt_ctr_y - ex_ctr_y) / ex_heights | |
targets_dw = ww * torch.log(gt_widths / ex_widths) | |
targets_dh = wh * torch.log(gt_heights / ex_heights) | |
targets = torch.stack((targets_dx, targets_dy, targets_dw, targets_dh), dim=1) | |
return targets | |
def decode(self, rel_codes, boxes): | |
""" | |
From a set of original boxes and encoded relative box offsets, | |
get the decoded boxes. | |
Arguments: | |
rel_codes (Tensor): encoded boxes | |
boxes (Tensor): reference boxes. | |
""" | |
boxes = boxes.to(rel_codes.dtype) | |
TO_REMOVE = 1 # TODO remove | |
widths = boxes[:, 2] - boxes[:, 0] + TO_REMOVE | |
heights = boxes[:, 3] - boxes[:, 1] + TO_REMOVE | |
ctr_x = boxes[:, 0] + 0.5 * widths | |
ctr_y = boxes[:, 1] + 0.5 * heights | |
wx, wy, ww, wh = self.weights | |
dx = rel_codes[:, 0::4] / wx | |
dy = rel_codes[:, 1::4] / wy | |
dw = rel_codes[:, 2::4] / ww | |
dh = rel_codes[:, 3::4] / wh | |
# Prevent sending too large values into torch.exp() | |
dw = torch.clamp(dw, max=self.bbox_xform_clip) | |
dh = torch.clamp(dh, max=self.bbox_xform_clip) | |
pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] | |
pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] | |
pred_w = torch.exp(dw) * widths[:, None] | |
pred_h = torch.exp(dh) * heights[:, None] | |
pred_boxes = torch.zeros_like(rel_codes) | |
# x1 | |
pred_boxes[:, 0::4] = pred_ctr_x - 0.5 * pred_w | |
# y1 | |
pred_boxes[:, 1::4] = pred_ctr_y - 0.5 * pred_h | |
# x2 (note: "- 1" is correct; don't be fooled by the asymmetry) | |
pred_boxes[:, 2::4] = pred_ctr_x + 0.5 * pred_w - 1 | |
# y2 (note: "- 1" is correct; don't be fooled by the asymmetry) | |
pred_boxes[:, 3::4] = pred_ctr_y + 0.5 * pred_h - 1 | |
return pred_boxes | |