Spaces:
Sleeping
Sleeping
import torch | |
import torch.nn as nn | |
class EvoNorm2d(nn.Module): | |
__constants__ = ["num_features", "eps", "nonlinearity"] | |
def __init__(self, num_features, eps=1e-5, nonlinearity=True, group=32): | |
super(EvoNorm2d, self).__init__() | |
self.num_features = num_features | |
self.eps = eps | |
self.nonlinearity = nonlinearity | |
self.group = group | |
self.weight = nn.Parameter(torch.Tensor(1, num_features, 1, 1)) | |
self.bias = nn.Parameter(torch.Tensor(1, num_features, 1, 1)) | |
if self.nonlinearity: | |
self.v = nn.Parameter(torch.Tensor(1, num_features, 1, 1)) | |
self.reset_parameters() | |
def reset_parameters(self): | |
nn.init.ones_(self.weight) | |
nn.init.zeros_(self.bias) | |
if self.nonlinearity: | |
nn.init.ones_(self.v) | |
def group_std(self, x, groups=32): | |
N, C, H, W = x.shape | |
x = torch.reshape(x, (N, groups, C // groups, H, W)) | |
std = torch.std(x, (3, 4), keepdim=True) | |
return torch.reshape(std + self.eps, (N, C, 1, 1)) | |
def forward(self, x): | |
if self.nonlinearity: | |
num = x * torch.sigmoid(self.v * x) | |
return num / self.group_std(x, self.group) * self.weight + self.bias | |
else: | |
return x * self.weight + self.bias | |