Spaces:
Sleeping
Sleeping
// Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. | |
at::Tensor SigmoidFocalLoss_forward_cuda( | |
const at::Tensor& logits, | |
const at::Tensor& targets, | |
const int num_classes, | |
const float gamma, | |
const float alpha); | |
at::Tensor SigmoidFocalLoss_backward_cuda( | |
const at::Tensor& logits, | |
const at::Tensor& targets, | |
const at::Tensor& d_losses, | |
const int num_classes, | |
const float gamma, | |
const float alpha); | |
at::Tensor ROIAlign_forward_cuda(const at::Tensor& input, | |
const at::Tensor& rois, | |
const float spatial_scale, | |
const int pooled_height, | |
const int pooled_width, | |
const int sampling_ratio); | |
at::Tensor ROIAlign_backward_cuda(const at::Tensor& grad, | |
const at::Tensor& rois, | |
const float spatial_scale, | |
const int pooled_height, | |
const int pooled_width, | |
const int batch_size, | |
const int channels, | |
const int height, | |
const int width, | |
const int sampling_ratio); | |
std::tuple<at::Tensor, at::Tensor> ROIPool_forward_cuda(const at::Tensor& input, | |
const at::Tensor& rois, | |
const float spatial_scale, | |
const int pooled_height, | |
const int pooled_width); | |
at::Tensor ROIPool_backward_cuda(const at::Tensor& grad, | |
const at::Tensor& input, | |
const at::Tensor& rois, | |
const at::Tensor& argmax, | |
const float spatial_scale, | |
const int pooled_height, | |
const int pooled_width, | |
const int batch_size, | |
const int channels, | |
const int height, | |
const int width); | |
at::Tensor nms_cuda(const at::Tensor boxes, float nms_overlap_thresh); | |
at::Tensor ml_nms_cuda(const at::Tensor boxes, float nms_overlap_thresh); | |
int deform_conv_forward_cuda(at::Tensor input, at::Tensor weight, | |
at::Tensor offset, at::Tensor output, | |
at::Tensor columns, at::Tensor ones, int kW, | |
int kH, int dW, int dH, int padW, int padH, | |
int dilationW, int dilationH, int group, | |
int deformable_group, int im2col_step); | |
int deform_conv_backward_input_cuda(at::Tensor input, at::Tensor offset, | |
at::Tensor gradOutput, at::Tensor gradInput, | |
at::Tensor gradOffset, at::Tensor weight, | |
at::Tensor columns, int kW, int kH, int dW, | |
int dH, int padW, int padH, int dilationW, | |
int dilationH, int group, | |
int deformable_group, int im2col_step); | |
int deform_conv_backward_parameters_cuda( | |
at::Tensor input, at::Tensor offset, at::Tensor gradOutput, | |
at::Tensor gradWeight, // at::Tensor gradBias, | |
at::Tensor columns, at::Tensor ones, int kW, int kH, int dW, int dH, | |
int padW, int padH, int dilationW, int dilationH, int group, | |
int deformable_group, float scale, int im2col_step); | |
void modulated_deform_conv_cuda_forward( | |
at::Tensor input, at::Tensor weight, at::Tensor bias, at::Tensor ones, | |
at::Tensor offset, at::Tensor mask, at::Tensor output, at::Tensor columns, | |
int kernel_h, int kernel_w, const int stride_h, const int stride_w, | |
const int pad_h, const int pad_w, const int dilation_h, | |
const int dilation_w, const int group, const int deformable_group, | |
const bool with_bias); | |
void modulated_deform_conv_cuda_backward( | |
at::Tensor input, at::Tensor weight, at::Tensor bias, at::Tensor ones, | |
at::Tensor offset, at::Tensor mask, at::Tensor columns, | |
at::Tensor grad_input, at::Tensor grad_weight, at::Tensor grad_bias, | |
at::Tensor grad_offset, at::Tensor grad_mask, at::Tensor grad_output, | |
int kernel_h, int kernel_w, int stride_h, int stride_w, int pad_h, | |
int pad_w, int dilation_h, int dilation_w, int group, int deformable_group, | |
const bool with_bias); | |
void deform_psroi_pooling_cuda_forward( | |
at::Tensor input, at::Tensor bbox, at::Tensor trans, at::Tensor out, | |
at::Tensor top_count, const int no_trans, const float spatial_scale, | |
const int output_dim, const int group_size, const int pooled_size, | |
const int part_size, const int sample_per_part, const float trans_std); | |
void deform_psroi_pooling_cuda_backward( | |
at::Tensor out_grad, at::Tensor input, at::Tensor bbox, at::Tensor trans, | |
at::Tensor top_count, at::Tensor input_grad, at::Tensor trans_grad, | |
const int no_trans, const float spatial_scale, const int output_dim, | |
const int group_size, const int pooled_size, const int part_size, | |
const int sample_per_part, const float trans_std); | |
at::Tensor compute_flow_cuda(const at::Tensor& boxes, | |
const int height, | |
const int width); | |