Spaces:
Sleeping
Sleeping
// Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. | |
// TODO make it in a common file | |
for (int i = blockIdx.x * blockDim.x + threadIdx.x; i < n; \ | |
i += blockDim.x * gridDim.x) | |
template <typename T> | |
__device__ T bilinear_interpolate(const T* bottom_data, | |
const int height, const int width, | |
T y, T x, | |
const int index /* index for debug only*/) { | |
// deal with cases that inverse elements are out of feature map boundary | |
if (y < -1.0 || y > height || x < -1.0 || x > width) { | |
//empty | |
return 0; | |
} | |
if (y <= 0) y = 0; | |
if (x <= 0) x = 0; | |
int y_low = (int) y; | |
int x_low = (int) x; | |
int y_high; | |
int x_high; | |
if (y_low >= height - 1) { | |
y_high = y_low = height - 1; | |
y = (T) y_low; | |
} else { | |
y_high = y_low + 1; | |
} | |
if (x_low >= width - 1) { | |
x_high = x_low = width - 1; | |
x = (T) x_low; | |
} else { | |
x_high = x_low + 1; | |
} | |
T ly = y - y_low; | |
T lx = x - x_low; | |
T hy = 1. - ly, hx = 1. - lx; | |
// do bilinear interpolation | |
T v1 = bottom_data[y_low * width + x_low]; | |
T v2 = bottom_data[y_low * width + x_high]; | |
T v3 = bottom_data[y_high * width + x_low]; | |
T v4 = bottom_data[y_high * width + x_high]; | |
T w1 = hy * hx, w2 = hy * lx, w3 = ly * hx, w4 = ly * lx; | |
T val = (w1 * v1 + w2 * v2 + w3 * v3 + w4 * v4); | |
return val; | |
} | |
template <typename T> | |
__global__ void RoIAlignForward(const int nthreads, const T* bottom_data, | |
const T spatial_scale, const int channels, | |
const int height, const int width, | |
const int pooled_height, const int pooled_width, | |
const int sampling_ratio, | |
const T* bottom_rois, T* top_data) { | |
CUDA_1D_KERNEL_LOOP(index, nthreads) { | |
// (n, c, ph, pw) is an element in the pooled output | |
int pw = index % pooled_width; | |
int ph = (index / pooled_width) % pooled_height; | |
int c = (index / pooled_width / pooled_height) % channels; | |
int n = index / pooled_width / pooled_height / channels; | |
const T* offset_bottom_rois = bottom_rois + n * 5; | |
int roi_batch_ind = offset_bottom_rois[0]; | |
// Do not using rounding; this implementation detail is critical | |
T roi_start_w = offset_bottom_rois[1] * spatial_scale; | |
T roi_start_h = offset_bottom_rois[2] * spatial_scale; | |
T roi_end_w = offset_bottom_rois[3] * spatial_scale; | |
T roi_end_h = offset_bottom_rois[4] * spatial_scale; | |
// T roi_start_w = round(offset_bottom_rois[1] * spatial_scale); | |
// T roi_start_h = round(offset_bottom_rois[2] * spatial_scale); | |
// T roi_end_w = round(offset_bottom_rois[3] * spatial_scale); | |
// T roi_end_h = round(offset_bottom_rois[4] * spatial_scale); | |
// Force malformed ROIs to be 1x1 | |
T roi_width = max(roi_end_w - roi_start_w, (T)1.); | |
T roi_height = max(roi_end_h - roi_start_h, (T)1.); | |
T bin_size_h = static_cast<T>(roi_height) / static_cast<T>(pooled_height); | |
T bin_size_w = static_cast<T>(roi_width) / static_cast<T>(pooled_width); | |
const T* offset_bottom_data = bottom_data + (roi_batch_ind * channels + c) * height * width; | |
// We use roi_bin_grid to sample the grid and mimic integral | |
int roi_bin_grid_h = (sampling_ratio > 0) ? sampling_ratio : ceil(roi_height / pooled_height); // e.g., = 2 | |
int roi_bin_grid_w = (sampling_ratio > 0) ? sampling_ratio : ceil(roi_width / pooled_width); | |
// We do average (integral) pooling inside a bin | |
const T count = roi_bin_grid_h * roi_bin_grid_w; // e.g. = 4 | |
T output_val = 0.; | |
for (int iy = 0; iy < roi_bin_grid_h; iy ++) // e.g., iy = 0, 1 | |
{ | |
const T y = roi_start_h + ph * bin_size_h + static_cast<T>(iy + .5f) * bin_size_h / static_cast<T>(roi_bin_grid_h); // e.g., 0.5, 1.5 | |
for (int ix = 0; ix < roi_bin_grid_w; ix ++) | |
{ | |
const T x = roi_start_w + pw * bin_size_w + static_cast<T>(ix + .5f) * bin_size_w / static_cast<T>(roi_bin_grid_w); | |
T val = bilinear_interpolate(offset_bottom_data, height, width, y, x, index); | |
output_val += val; | |
} | |
} | |
output_val /= count; | |
top_data[index] = output_val; | |
} | |
} | |
template <typename T> | |
__device__ void bilinear_interpolate_gradient( | |
const int height, const int width, | |
T y, T x, | |
T & w1, T & w2, T & w3, T & w4, | |
int & x_low, int & x_high, int & y_low, int & y_high, | |
const int index /* index for debug only*/) { | |
// deal with cases that inverse elements are out of feature map boundary | |
if (y < -1.0 || y > height || x < -1.0 || x > width) { | |
//empty | |
w1 = w2 = w3 = w4 = 0.; | |
x_low = x_high = y_low = y_high = -1; | |
return; | |
} | |
if (y <= 0) y = 0; | |
if (x <= 0) x = 0; | |
y_low = (int) y; | |
x_low = (int) x; | |
if (y_low >= height - 1) { | |
y_high = y_low = height - 1; | |
y = (T) y_low; | |
} else { | |
y_high = y_low + 1; | |
} | |
if (x_low >= width - 1) { | |
x_high = x_low = width - 1; | |
x = (T) x_low; | |
} else { | |
x_high = x_low + 1; | |
} | |
T ly = y - y_low; | |
T lx = x - x_low; | |
T hy = 1. - ly, hx = 1. - lx; | |
// reference in forward | |
// T v1 = bottom_data[y_low * width + x_low]; | |
// T v2 = bottom_data[y_low * width + x_high]; | |
// T v3 = bottom_data[y_high * width + x_low]; | |
// T v4 = bottom_data[y_high * width + x_high]; | |
// T val = (w1 * v1 + w2 * v2 + w3 * v3 + w4 * v4); | |
w1 = hy * hx, w2 = hy * lx, w3 = ly * hx, w4 = ly * lx; | |
return; | |
} | |
template <typename T> | |
__global__ void RoIAlignBackwardFeature(const int nthreads, const T* top_diff, | |
const int num_rois, const T spatial_scale, | |
const int channels, const int height, const int width, | |
const int pooled_height, const int pooled_width, | |
const int sampling_ratio, | |
T* bottom_diff, | |
const T* bottom_rois) { | |
CUDA_1D_KERNEL_LOOP(index, nthreads) { | |
// (n, c, ph, pw) is an element in the pooled output | |
int pw = index % pooled_width; | |
int ph = (index / pooled_width) % pooled_height; | |
int c = (index / pooled_width / pooled_height) % channels; | |
int n = index / pooled_width / pooled_height / channels; | |
const T* offset_bottom_rois = bottom_rois + n * 5; | |
int roi_batch_ind = offset_bottom_rois[0]; | |
// Do not using rounding; this implementation detail is critical | |
T roi_start_w = offset_bottom_rois[1] * spatial_scale; | |
T roi_start_h = offset_bottom_rois[2] * spatial_scale; | |
T roi_end_w = offset_bottom_rois[3] * spatial_scale; | |
T roi_end_h = offset_bottom_rois[4] * spatial_scale; | |
// T roi_start_w = round(offset_bottom_rois[1] * spatial_scale); | |
// T roi_start_h = round(offset_bottom_rois[2] * spatial_scale); | |
// T roi_end_w = round(offset_bottom_rois[3] * spatial_scale); | |
// T roi_end_h = round(offset_bottom_rois[4] * spatial_scale); | |
// Force malformed ROIs to be 1x1 | |
T roi_width = max(roi_end_w - roi_start_w, (T)1.); | |
T roi_height = max(roi_end_h - roi_start_h, (T)1.); | |
T bin_size_h = static_cast<T>(roi_height) / static_cast<T>(pooled_height); | |
T bin_size_w = static_cast<T>(roi_width) / static_cast<T>(pooled_width); | |
T* offset_bottom_diff = bottom_diff + (roi_batch_ind * channels + c) * height * width; | |
int top_offset = (n * channels + c) * pooled_height * pooled_width; | |
const T* offset_top_diff = top_diff + top_offset; | |
const T top_diff_this_bin = offset_top_diff[ph * pooled_width + pw]; | |
// We use roi_bin_grid to sample the grid and mimic integral | |
int roi_bin_grid_h = (sampling_ratio > 0) ? sampling_ratio : ceil(roi_height / pooled_height); // e.g., = 2 | |
int roi_bin_grid_w = (sampling_ratio > 0) ? sampling_ratio : ceil(roi_width / pooled_width); | |
// We do average (integral) pooling inside a bin | |
const T count = roi_bin_grid_h * roi_bin_grid_w; // e.g. = 4 | |
for (int iy = 0; iy < roi_bin_grid_h; iy ++) // e.g., iy = 0, 1 | |
{ | |
const T y = roi_start_h + ph * bin_size_h + static_cast<T>(iy + .5f) * bin_size_h / static_cast<T>(roi_bin_grid_h); // e.g., 0.5, 1.5 | |
for (int ix = 0; ix < roi_bin_grid_w; ix ++) | |
{ | |
const T x = roi_start_w + pw * bin_size_w + static_cast<T>(ix + .5f) * bin_size_w / static_cast<T>(roi_bin_grid_w); | |
T w1, w2, w3, w4; | |
int x_low, x_high, y_low, y_high; | |
bilinear_interpolate_gradient(height, width, y, x, | |
w1, w2, w3, w4, | |
x_low, x_high, y_low, y_high, | |
index); | |
T g1 = top_diff_this_bin * w1 / count; | |
T g2 = top_diff_this_bin * w2 / count; | |
T g3 = top_diff_this_bin * w3 / count; | |
T g4 = top_diff_this_bin * w4 / count; | |
if (x_low >= 0 && x_high >= 0 && y_low >= 0 && y_high >= 0) | |
{ | |
atomicAdd(offset_bottom_diff + y_low * width + x_low, static_cast<T>(g1)); | |
atomicAdd(offset_bottom_diff + y_low * width + x_high, static_cast<T>(g2)); | |
atomicAdd(offset_bottom_diff + y_high * width + x_low, static_cast<T>(g3)); | |
atomicAdd(offset_bottom_diff + y_high * width + x_high, static_cast<T>(g4)); | |
} // if | |
} // ix | |
} // iy | |
} // CUDA_1D_KERNEL_LOOP | |
} // RoIAlignBackward | |
at::Tensor ROIAlign_forward_cuda(const at::Tensor& input, | |
const at::Tensor& rois, | |
const float spatial_scale, | |
const int pooled_height, | |
const int pooled_width, | |
const int sampling_ratio) { | |
AT_ASSERTM(input.device().is_cuda(), "input must be a CUDA tensor"); | |
AT_ASSERTM(rois.device().is_cuda(), "rois must be a CUDA tensor"); | |
auto num_rois = rois.size(0); | |
auto channels = input.size(1); | |
auto height = input.size(2); | |
auto width = input.size(3); | |
auto output = at::empty({num_rois, channels, pooled_height, pooled_width}, input.options()); | |
auto output_size = num_rois * pooled_height * pooled_width * channels; | |
cudaStream_t stream = at::cuda::getCurrentCUDAStream(); | |
dim3 grid(std::min(THCCeilDiv(output_size, 512L), 4096L)); | |
dim3 block(512); | |
if (output.numel() == 0) { | |
THCudaCheck(cudaGetLastError()); | |
return output; | |
} | |
AT_DISPATCH_FLOATING_TYPES(input.scalar_type(), "ROIAlign_forward", [&] { | |
RoIAlignForward<scalar_t><<<grid, block, 0, stream>>>( | |
output_size, | |
input.contiguous().data_ptr<scalar_t>(), | |
spatial_scale, | |
channels, | |
height, | |
width, | |
pooled_height, | |
pooled_width, | |
sampling_ratio, | |
rois.contiguous().data_ptr<scalar_t>(), | |
output.data_ptr<scalar_t>()); | |
}); | |
THCudaCheck(cudaGetLastError()); | |
return output; | |
} | |
// TODO remove the dependency on input and use instead its sizes -> save memory | |
at::Tensor ROIAlign_backward_cuda(const at::Tensor& grad, | |
const at::Tensor& rois, | |
const float spatial_scale, | |
const int pooled_height, | |
const int pooled_width, | |
const int batch_size, | |
const int channels, | |
const int height, | |
const int width, | |
const int sampling_ratio) { | |
AT_ASSERTM(grad.device().is_cuda(), "grad must be a CUDA tensor"); | |
AT_ASSERTM(rois.device().is_cuda(), "rois must be a CUDA tensor"); | |
auto num_rois = rois.size(0); | |
auto grad_input = at::zeros({batch_size, channels, height, width}, grad.options()); | |
cudaStream_t stream = at::cuda::getCurrentCUDAStream(); | |
dim3 grid(std::min(THCCeilDiv(grad.numel(), 512L), 4096L)); | |
dim3 block(512); | |
// handle possibly empty gradients | |
if (grad.numel() == 0) { | |
THCudaCheck(cudaGetLastError()); | |
return grad_input; | |
} | |
AT_DISPATCH_FLOATING_TYPES(grad.scalar_type(), "ROIAlign_backward", [&] { | |
RoIAlignBackwardFeature<scalar_t><<<grid, block, 0, stream>>>( | |
grad.numel(), | |
grad.contiguous().data_ptr<scalar_t>(), | |
num_rois, | |
spatial_scale, | |
channels, | |
height, | |
width, | |
pooled_height, | |
pooled_width, | |
sampling_ratio, | |
grad_input.data_ptr<scalar_t>(), | |
rois.contiguous().data_ptr<scalar_t>()); | |
}); | |
THCudaCheck(cudaGetLastError()); | |
return grad_input; | |
} | |