zdou0830's picture
desco
749745d
raw
history blame
3.22 kB
from typing import Union, List
from transformers import AutoTokenizer
import torch
class HFPTTokenizer(object):
def __init__(self, pt_name=None):
self.pt_name = pt_name
self.added_sep_token = 0
self.added_cls_token = 0
self.enable_add_tokens = False
self.gpt_special_case = (not self.enable_add_tokens) and ("gpt" in self.pt_name)
if pt_name is None:
self.tokenizer = AutoTokenizer.from_pretrained("bert-base-cased")
else:
self.tokenizer = AutoTokenizer.from_pretrained(pt_name)
# Adding tokens to GPT causing NaN training loss.
# Disable for now until further investigation.
if self.enable_add_tokens:
if self.tokenizer.sep_token is None:
self.tokenizer.add_special_tokens({"sep_token": "<SEP>"})
self.added_sep_token = 1
if self.tokenizer.cls_token is None:
self.tokenizer.add_special_tokens({"cls_token": "<CLS>"})
self.added_cls_token = 1
if self.gpt_special_case:
self.tokenizer.pad_token = self.tokenizer.eos_token
self.tokenizer.sep_token = self.tokenizer.eos_token
def get_eot_token(self):
return self.tokenizer.encode(self.tokenizer.sep_token, add_special_tokens=False)[0]
def get_sot_token(self):
return self.tokenizer.encode(self.tokenizer.cls_token, add_special_tokens=False)[0]
def get_eot_token_list(self):
return self.tokenizer.encode(self.tokenizer.sep_token, add_special_tokens=False)
def get_sot_token_list(self):
return self.tokenizer.encode(self.tokenizer.cls_token, add_special_tokens=False)
def get_tokenizer_obj(self):
return self.tokenizer
# Language model needs to know if new tokens
# were added to the dictionary.
def check_added_tokens(self):
return self.added_sep_token + self.added_cls_token
def tokenize(self, texts: Union[str, List[str]], context_length: int = 77):
if isinstance(texts, str):
texts = [texts]
padding = "max_length"
seqstart = []
seqtok = []
seqend = []
max_length = context_length
if self.added_cls_token > 0:
seqstart = self.get_sot_token_list()
max_length = max_length - 1
if self.added_sep_token > 0:
seqend = self.get_eot_token_list()
max_length = max_length - 1
tokens = self.tokenizer(texts, padding=padding, truncation=True, max_length=max_length)["input_ids"]
for i in range(len(tokens)):
tokens[i] = seqstart + tokens[i] + seqend
if self.gpt_special_case:
for i in range(len(tokens)):
tokens[i][-1] = self.get_eot_token()
# print(str(tokens))
result = torch.Tensor(tokens).type(torch.LongTensor)
return result
def get_vocab_size(self):
return self.tokenizer.vocab_size
def __call__(self, texts: Union[str, List[str]], context_length: int = 77):
return self.tokenize(texts, context_length)