Spaces:
Sleeping
Sleeping
import torch | |
from torch import nn | |
class MixedOperationRandom(nn.Module): | |
def __init__(self, search_ops): | |
super(MixedOperationRandom, self).__init__() | |
self.ops = nn.ModuleList(search_ops) | |
self.num_ops = len(search_ops) | |
def forward(self, x, x_path=None): | |
if x_path is None: | |
output = sum(op(x) for op in self.ops) / self.num_ops | |
else: | |
assert isinstance(x_path, (int, float)) and 0 <= x_path < self.num_ops or isinstance(x_path, torch.Tensor) | |
if isinstance(x_path, (int, float)): | |
x_path = int(x_path) | |
assert 0 <= x_path < self.num_ops | |
output = self.ops[x_path](x) | |
elif isinstance(x_path, torch.Tensor): | |
assert x_path.size(0) == x.size(0), "batch_size should match length of y_idx" | |
output = torch.cat( | |
[self.ops[int(x_path[i].item())](x.narrow(0, i, 1)) for i in range(x.size(0))], dim=0 | |
) | |
return output | |