zdou0830's picture
desco
749745d
raw
history blame
8.78 kB
import torch
import torch.distributed as dist
import time
from torchvision.ops import nms
import random
import numpy as np
from PIL import Image, ImageDraw
import pdb
from maskrcnn_benchmark.structures.bounding_box import BoxList
from .modulated_coco import ConvertCocoPolysToMask
from .tsv import ODTSVDataset, TSVYamlDataset
from .od_to_grounding import sanity_check_target_after_processing
from copy import deepcopy
class PseudoData(TSVYamlDataset):
def __init__(
self,
yaml_file,
transforms,
return_tokens,
return_masks,
tokenizer,
caption_min_box=1,
replace_clean_label=False,
further_screen=False,
caption_conf=0.5,
caption_nms=-1,
pack_random_caption_number=0,
inference_caption=False,
sample_negative_for_grounding_data=-1,
random_pack_prob=-1.0,
no_random_pack_probability=0.0,
safeguard_positive_caption=True,
mlm_obj_for_only_positive=False,
caption_format_version="v1",
local_debug=False,
max_query_len=256,
diver_box_for_vqa=False,
**kwargs
):
super(PseudoData, self).__init__(yaml_file, None, replace_clean_label)
self.yaml_file = yaml_file
self._transforms = transforms
self.max_query_len = max_query_len
self.prepare = ConvertCocoPolysToMask(
return_masks=return_masks, return_tokens=return_tokens, tokenizer=tokenizer, max_query_len=max_query_len
)
self.diver_box_for_vqa = diver_box_for_vqa
if "qa" in self.yaml_file:
assert self.diver_box_for_vqa # must diver box
self.tokenizer = tokenizer
self.caption_min_box = caption_min_box
self.replace_clean_label = replace_clean_label
self.further_screen = further_screen
self.pack_random_caption_number = pack_random_caption_number
self.caption_format_version = caption_format_version
self.caption_conf = caption_conf
self.caption_nms = caption_nms
self.inference_caption = inference_caption
self.sample_negative_for_grounding_data = sample_negative_for_grounding_data
self.random_pack_prob = random_pack_prob
self.no_random_pack_probability = no_random_pack_probability
self.safeguard_positive_caption = safeguard_positive_caption
self.mlm_obj_for_only_positive = mlm_obj_for_only_positive
self.local_debug = local_debug
try:
self.rank = dist.get_rank()
except:
self.rank = 0
def __len__(self):
return super(PseudoData, self).__len__()
@staticmethod
def check_for_overlap(range1, range2):
if range1[0] > range2[1] or range2[0] > range1[1]:
return False
return True
def divert_boxes(self, anno):
# first get answer start and end
answer_start = len(anno["text"]) + 1 # +1 for the space
answer_end = len(anno["caption"])
question = anno["caption"][:answer_start] # get the question
mask_start = len(question)
# add the mask token
mask_token = self.tokenizer.mask_token
if mask_token is None:
mask_token = "answer"
question += mask_token
mask_end = len(question)
# divert the box
for i in range(len(anno["bboxes"])):
# check over lap
for j in range(len(anno["tokens_positive"][i])):
if self.check_for_overlap(anno["tokens_positive"][i][j], [answer_start, answer_end]):
# if overlap, then divert the box to the mask token
anno["tokens_positive"][i][j] = [mask_start, mask_end]
anno["caption"] = question
return question, anno
def __getitem__(self, idx):
img, anno, _, scale = super(PseudoData, self).__getitem__(idx)
if self.inference_caption:
caption = None
if isinstance(anno, list):
caption = anno[0]["caption"] # inference mode for bing
anno = []
elif len(anno) == 1:
caption = anno["caption"] # inference mode for googlecc
anno = []
else:
caption = " ".join(anno["captions"])
anno = []
else:
if self.caption_format_version == "v2":
anno = self.convert_anno_from_yiling_to_ours(anno)
if self.further_screen:
conf = self.caption_conf
nms_thre = self.caption_nms
bboxes = torch.as_tensor(anno["bboxes"]).float()
scores = torch.as_tensor(anno["scores"])
tokens_positive = anno["tokens_positive"]
keep = scores > conf
scores = scores[keep]
bboxes = bboxes[keep]
tokens_positive = [i for index, i in enumerate(tokens_positive) if keep[index]]
assert len(tokens_positive) == len(bboxes) == len(scores)
if len(bboxes) < self.caption_min_box: # Retry triggered!
return self[np.random.choice(len(self))]
if nms_thre > 0:
keep = nms(boxes=bboxes, scores=scores, iou_threshold=nms_thre)
scores = scores[keep]
bboxes = bboxes[keep]
tokens_positive = [tokens_positive[i] for i in keep]
assert len(tokens_positive) == len(bboxes) == len(scores)
# Write back
anno["bboxes"] = bboxes.tolist()
anno["scores"] = scores.tolist()
anno["tokens_positive"] = tokens_positive
boxes = torch.as_tensor(anno["bboxes"])
if len(boxes) < self.caption_min_box: # Retry triggered!
return self[np.random.choice(len(self))]
target = BoxList(boxes, (anno["img_w"], anno["img_h"]), mode="xyxy")
target = target.clip_to_image(remove_empty=True)
if self.diver_box_for_vqa:
caption, anno = self.divert_boxes(anno=anno) # will change caption and "tokens_positive"
caption = anno["caption"]
greenlight_span_for_masked_lm_objective = [(0, len(caption))]
new_anno = []
areas = target.area()
for i in range(len(target)):
new_anno_i = {}
new_anno_i["area"] = areas[i]
new_anno_i["iscrowd"] = 0
new_anno_i["image_id"] = idx
new_anno_i["category_id"] = 1 # following vg and others
new_anno_i["id"] = None
new_anno_i["bbox"] = target.bbox[i].numpy().tolist()
new_anno_i["tokens_positive"] = anno["tokens_positive"][i]
new_anno.append(new_anno_i)
anno = new_anno
annotations = {"image_id": idx, "annotations": anno, "caption": caption}
annotations["greenlight_span_for_masked_lm_objective"] = greenlight_span_for_masked_lm_objective
img, annotations = self.prepare(img, annotations, box_format="xyxy")
if self._transforms is not None:
img, target = self._transforms(img, target)
# add additional property
for ann in annotations:
target.add_field(ann, annotations[ann])
# This is the real image_id
image_id = self.get_img_id(idx)
# Can insert additional field into target if needed
sanity_check_target_after_processing(target)
return img, target, idx
def convert_anno_from_yiling_to_ours(self, anno):
flatterned_bboxes = []
flatterned_tokens_positive = []
flatterned_bboxes_scores = []
for i in range(len(anno["bboxes"])):
# i is the index for entity
for j in range(len(anno["bboxes"][i])):
# j is the index for each box
flatterned_bboxes.append(anno["bboxes"][i][j])
flatterned_tokens_positive.append(
anno["tokens_positive"][i]
) # Assume this box corresponds to all the token_spans for this entity
flatterned_bboxes_scores.append(anno["scores"][i][j])
anno["bboxes"] = flatterned_bboxes
anno["tokens_positive"] = flatterned_tokens_positive
anno["scores"] = flatterned_bboxes_scores
return anno
def get_raw_image(self, idx):
image, *_ = super(PseudoData, self).__getitem__(idx)
return image
def get_img_id(self, idx):
line_no = self.get_line_no(idx)
if self.label_tsv is not None:
row = self.label_tsv.seek(line_no)
img_id = row[0]
return img_id