Upload 14 files
Browse files- clip/__init__.py +1 -0
- clip/bpe_simple_vocab_16e6.txt.gz +3 -0
- clip/clip.py +241 -0
- clip/clipseg.py +538 -0
- clip/model.py +436 -0
- clip/simple_tokenizer.py +132 -0
- clip/vitseg.py +286 -0
- ui/globals.py +16 -0
- ui/main.py +96 -0
- ui/tabs/extras_tab.py +245 -0
- ui/tabs/facemgr_tab.py +187 -0
- ui/tabs/faceswap_tab.py +831 -0
- ui/tabs/livecam_tab.py +57 -0
- ui/tabs/settings_tab.py +129 -0
clip/__init__.py
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
from .clip import *
|
clip/bpe_simple_vocab_16e6.txt.gz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:924691ac288e54409236115652ad4aa250f48203de50a9e4722a6ecd48d6804a
|
3 |
+
size 1356917
|
clip/clip.py
ADDED
@@ -0,0 +1,241 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import hashlib
|
2 |
+
import os
|
3 |
+
import urllib
|
4 |
+
import warnings
|
5 |
+
from typing import Any, Union, List
|
6 |
+
|
7 |
+
import torch
|
8 |
+
from PIL import Image
|
9 |
+
from torchvision.transforms import Compose, Resize, CenterCrop, ToTensor, Normalize
|
10 |
+
from tqdm import tqdm
|
11 |
+
|
12 |
+
from .model import build_model
|
13 |
+
from .simple_tokenizer import SimpleTokenizer as _Tokenizer
|
14 |
+
|
15 |
+
try:
|
16 |
+
from torchvision.transforms import InterpolationMode
|
17 |
+
BICUBIC = InterpolationMode.BICUBIC
|
18 |
+
except ImportError:
|
19 |
+
BICUBIC = Image.BICUBIC
|
20 |
+
|
21 |
+
|
22 |
+
|
23 |
+
__all__ = ["available_models", "load", "tokenize"]
|
24 |
+
_tokenizer = _Tokenizer()
|
25 |
+
|
26 |
+
_MODELS = {
|
27 |
+
"RN50": "https://openaipublic.azureedge.net/clip/models/afeb0e10f9e5a86da6080e35cf09123aca3b358a0c3e3b6c78a7b63bc04b6762/RN50.pt",
|
28 |
+
"RN101": "https://openaipublic.azureedge.net/clip/models/8fa8567bab74a42d41c5915025a8e4538c3bdbe8804a470a72f30b0d94fab599/RN101.pt",
|
29 |
+
"RN50x4": "https://openaipublic.azureedge.net/clip/models/7e526bd135e493cef0776de27d5f42653e6b4c8bf9e0f653bb11773263205fdd/RN50x4.pt",
|
30 |
+
"RN50x16": "https://openaipublic.azureedge.net/clip/models/52378b407f34354e150460fe41077663dd5b39c54cd0bfd2b27167a4a06ec9aa/RN50x16.pt",
|
31 |
+
"RN50x64": "https://openaipublic.azureedge.net/clip/models/be1cfb55d75a9666199fb2206c106743da0f6468c9d327f3e0d0a543a9919d9c/RN50x64.pt",
|
32 |
+
"ViT-B/32": "https://openaipublic.azureedge.net/clip/models/40d365715913c9da98579312b702a82c18be219cc2a73407c4526f58eba950af/ViT-B-32.pt",
|
33 |
+
"ViT-B/16": "https://openaipublic.azureedge.net/clip/models/5806e77cd80f8b59890b7e101eabd078d9fb84e6937f9e85e4ecb61988df416f/ViT-B-16.pt",
|
34 |
+
"ViT-L/14": "https://openaipublic.azureedge.net/clip/models/b8cca3fd41ae0c99ba7e8951adf17d267cdb84cd88be6f7c2e0eca1737a03836/ViT-L-14.pt",
|
35 |
+
"ViT-L/14@336px": "https://openaipublic.azureedge.net/clip/models/3035c92b350959924f9f00213499208652fc7ea050643e8b385c2dac08641f02/ViT-L-14-336px.pt",
|
36 |
+
}
|
37 |
+
|
38 |
+
|
39 |
+
def _download(url: str, root: str):
|
40 |
+
os.makedirs(root, exist_ok=True)
|
41 |
+
filename = os.path.basename(url)
|
42 |
+
|
43 |
+
expected_sha256 = url.split("/")[-2]
|
44 |
+
download_target = os.path.join(root, filename)
|
45 |
+
|
46 |
+
if os.path.exists(download_target) and not os.path.isfile(download_target):
|
47 |
+
raise RuntimeError(f"{download_target} exists and is not a regular file")
|
48 |
+
|
49 |
+
if os.path.isfile(download_target):
|
50 |
+
if hashlib.sha256(open(download_target, "rb").read()).hexdigest() == expected_sha256:
|
51 |
+
return download_target
|
52 |
+
else:
|
53 |
+
warnings.warn(f"{download_target} exists, but the SHA256 checksum does not match; re-downloading the file")
|
54 |
+
|
55 |
+
with urllib.request.urlopen(url) as source, open(download_target, "wb") as output:
|
56 |
+
with tqdm(total=int(source.info().get("Content-Length")), ncols=80, unit='iB', unit_scale=True, unit_divisor=1024) as loop:
|
57 |
+
while True:
|
58 |
+
buffer = source.read(8192)
|
59 |
+
if not buffer:
|
60 |
+
break
|
61 |
+
|
62 |
+
output.write(buffer)
|
63 |
+
loop.update(len(buffer))
|
64 |
+
|
65 |
+
if hashlib.sha256(open(download_target, "rb").read()).hexdigest() != expected_sha256:
|
66 |
+
raise RuntimeError("Model has been downloaded but the SHA256 checksum does not not match")
|
67 |
+
|
68 |
+
return download_target
|
69 |
+
|
70 |
+
|
71 |
+
def _convert_image_to_rgb(image):
|
72 |
+
return image.convert("RGB")
|
73 |
+
|
74 |
+
|
75 |
+
def _transform(n_px):
|
76 |
+
return Compose([
|
77 |
+
Resize(n_px, interpolation=BICUBIC),
|
78 |
+
CenterCrop(n_px),
|
79 |
+
_convert_image_to_rgb,
|
80 |
+
ToTensor(),
|
81 |
+
Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711)),
|
82 |
+
])
|
83 |
+
|
84 |
+
|
85 |
+
def available_models() -> List[str]:
|
86 |
+
"""Returns the names of available CLIP models"""
|
87 |
+
return list(_MODELS.keys())
|
88 |
+
|
89 |
+
|
90 |
+
def load(name: str, device: Union[str, torch.device] = "cuda" if torch.cuda.is_available() else "cpu", jit: bool = False, download_root: str = None):
|
91 |
+
"""Load a CLIP model
|
92 |
+
|
93 |
+
Parameters
|
94 |
+
----------
|
95 |
+
name : str
|
96 |
+
A model name listed by `clip.available_models()`, or the path to a model checkpoint containing the state_dict
|
97 |
+
|
98 |
+
device : Union[str, torch.device]
|
99 |
+
The device to put the loaded model
|
100 |
+
|
101 |
+
jit : bool
|
102 |
+
Whether to load the optimized JIT model or more hackable non-JIT model (default).
|
103 |
+
|
104 |
+
download_root: str
|
105 |
+
path to download the model files; by default, it uses "~/.cache/clip"
|
106 |
+
|
107 |
+
Returns
|
108 |
+
-------
|
109 |
+
model : torch.nn.Module
|
110 |
+
The CLIP model
|
111 |
+
|
112 |
+
preprocess : Callable[[PIL.Image], torch.Tensor]
|
113 |
+
A torchvision transform that converts a PIL image into a tensor that the returned model can take as its input
|
114 |
+
"""
|
115 |
+
if name in _MODELS:
|
116 |
+
model_path = _download(_MODELS[name], download_root or os.path.expanduser("~/.cache/clip"))
|
117 |
+
elif os.path.isfile(name):
|
118 |
+
model_path = name
|
119 |
+
else:
|
120 |
+
raise RuntimeError(f"Model {name} not found; available models = {available_models()}")
|
121 |
+
|
122 |
+
with open(model_path, 'rb') as opened_file:
|
123 |
+
try:
|
124 |
+
# loading JIT archive
|
125 |
+
model = torch.jit.load(opened_file, map_location=device if jit else "cpu").eval()
|
126 |
+
state_dict = None
|
127 |
+
except RuntimeError:
|
128 |
+
# loading saved state dict
|
129 |
+
if jit:
|
130 |
+
warnings.warn(f"File {model_path} is not a JIT archive. Loading as a state dict instead")
|
131 |
+
jit = False
|
132 |
+
state_dict = torch.load(opened_file, map_location="cpu")
|
133 |
+
|
134 |
+
if not jit:
|
135 |
+
model = build_model(state_dict or model.state_dict()).to(device)
|
136 |
+
if str(device) == "cpu":
|
137 |
+
model.float()
|
138 |
+
return model, _transform(model.visual.input_resolution)
|
139 |
+
|
140 |
+
# patch the device names
|
141 |
+
device_holder = torch.jit.trace(lambda: torch.ones([]).to(torch.device(device)), example_inputs=[])
|
142 |
+
device_node = [n for n in device_holder.graph.findAllNodes("prim::Constant") if "Device" in repr(n)][-1]
|
143 |
+
|
144 |
+
def _node_get(node: torch._C.Node, key: str):
|
145 |
+
"""Gets attributes of a node which is polymorphic over return type.
|
146 |
+
|
147 |
+
From https://github.com/pytorch/pytorch/pull/82628
|
148 |
+
"""
|
149 |
+
sel = node.kindOf(key)
|
150 |
+
return getattr(node, sel)(key)
|
151 |
+
|
152 |
+
def patch_device(module):
|
153 |
+
try:
|
154 |
+
graphs = [module.graph] if hasattr(module, "graph") else []
|
155 |
+
except RuntimeError:
|
156 |
+
graphs = []
|
157 |
+
|
158 |
+
if hasattr(module, "forward1"):
|
159 |
+
graphs.append(module.forward1.graph)
|
160 |
+
|
161 |
+
for graph in graphs:
|
162 |
+
for node in graph.findAllNodes("prim::Constant"):
|
163 |
+
if "value" in node.attributeNames() and str(_node_get(node, "value")).startswith("cuda"):
|
164 |
+
node.copyAttributes(device_node)
|
165 |
+
|
166 |
+
model.apply(patch_device)
|
167 |
+
patch_device(model.encode_image)
|
168 |
+
patch_device(model.encode_text)
|
169 |
+
|
170 |
+
# patch dtype to float32 on CPU
|
171 |
+
if str(device) == "cpu":
|
172 |
+
float_holder = torch.jit.trace(lambda: torch.ones([]).float(), example_inputs=[])
|
173 |
+
float_input = list(float_holder.graph.findNode("aten::to").inputs())[1]
|
174 |
+
float_node = float_input.node()
|
175 |
+
|
176 |
+
def patch_float(module):
|
177 |
+
try:
|
178 |
+
graphs = [module.graph] if hasattr(module, "graph") else []
|
179 |
+
except RuntimeError:
|
180 |
+
graphs = []
|
181 |
+
|
182 |
+
if hasattr(module, "forward1"):
|
183 |
+
graphs.append(module.forward1.graph)
|
184 |
+
|
185 |
+
for graph in graphs:
|
186 |
+
for node in graph.findAllNodes("aten::to"):
|
187 |
+
inputs = list(node.inputs())
|
188 |
+
for i in [1, 2]: # dtype can be the second or third argument to aten::to()
|
189 |
+
if _node_get(inputs[i].node(), "value") == 5:
|
190 |
+
inputs[i].node().copyAttributes(float_node)
|
191 |
+
|
192 |
+
model.apply(patch_float)
|
193 |
+
patch_float(model.encode_image)
|
194 |
+
patch_float(model.encode_text)
|
195 |
+
|
196 |
+
model.float()
|
197 |
+
|
198 |
+
return model, _transform(model.input_resolution.item())
|
199 |
+
|
200 |
+
|
201 |
+
def tokenize(texts: Union[str, List[str]], context_length: int = 77, truncate: bool = False) -> Union[torch.IntTensor, torch.LongTensor]:
|
202 |
+
"""
|
203 |
+
Returns the tokenized representation of given input string(s)
|
204 |
+
|
205 |
+
Parameters
|
206 |
+
----------
|
207 |
+
texts : Union[str, List[str]]
|
208 |
+
An input string or a list of input strings to tokenize
|
209 |
+
|
210 |
+
context_length : int
|
211 |
+
The context length to use; all CLIP models use 77 as the context length
|
212 |
+
|
213 |
+
truncate: bool
|
214 |
+
Whether to truncate the text in case its encoding is longer than the context length
|
215 |
+
|
216 |
+
Returns
|
217 |
+
-------
|
218 |
+
A two-dimensional tensor containing the resulting tokens, shape = [number of input strings, context_length].
|
219 |
+
We return LongTensor when torch version is <1.8.0, since older index_select requires indices to be long.
|
220 |
+
"""
|
221 |
+
if isinstance(texts, str):
|
222 |
+
texts = [texts]
|
223 |
+
|
224 |
+
sot_token = _tokenizer.encoder["<|startoftext|>"]
|
225 |
+
eot_token = _tokenizer.encoder["<|endoftext|>"]
|
226 |
+
all_tokens = [[sot_token] + _tokenizer.encode(text) + [eot_token] for text in texts]
|
227 |
+
#if packaging.version.parse(torch.__version__) < packaging.version.parse("1.8.0"):
|
228 |
+
# result = torch.zeros(len(all_tokens), context_length, dtype=torch.long)
|
229 |
+
#else:
|
230 |
+
result = torch.zeros(len(all_tokens), context_length, dtype=torch.int)
|
231 |
+
|
232 |
+
for i, tokens in enumerate(all_tokens):
|
233 |
+
if len(tokens) > context_length:
|
234 |
+
if truncate:
|
235 |
+
tokens = tokens[:context_length]
|
236 |
+
tokens[-1] = eot_token
|
237 |
+
else:
|
238 |
+
raise RuntimeError(f"Input {texts[i]} is too long for context length {context_length}")
|
239 |
+
result[i, :len(tokens)] = torch.tensor(tokens)
|
240 |
+
|
241 |
+
return result
|
clip/clipseg.py
ADDED
@@ -0,0 +1,538 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
from os.path import basename, dirname, join, isfile
|
3 |
+
import torch
|
4 |
+
from torch import nn
|
5 |
+
from torch.nn import functional as nnf
|
6 |
+
from torch.nn.modules.activation import ReLU
|
7 |
+
|
8 |
+
|
9 |
+
def get_prompt_list(prompt):
|
10 |
+
if prompt == 'plain':
|
11 |
+
return ['{}']
|
12 |
+
elif prompt == 'fixed':
|
13 |
+
return ['a photo of a {}.']
|
14 |
+
elif prompt == 'shuffle':
|
15 |
+
return ['a photo of a {}.', 'a photograph of a {}.', 'an image of a {}.', '{}.']
|
16 |
+
elif prompt == 'shuffle+':
|
17 |
+
return ['a photo of a {}.', 'a photograph of a {}.', 'an image of a {}.', '{}.',
|
18 |
+
'a cropped photo of a {}.', 'a good photo of a {}.', 'a photo of one {}.',
|
19 |
+
'a bad photo of a {}.', 'a photo of the {}.']
|
20 |
+
else:
|
21 |
+
raise ValueError('Invalid value for prompt')
|
22 |
+
|
23 |
+
|
24 |
+
def forward_multihead_attention(x, b, with_aff=False, attn_mask=None):
|
25 |
+
"""
|
26 |
+
Simplified version of multihead attention (taken from torch source code but without tons of if clauses).
|
27 |
+
The mlp and layer norm come from CLIP.
|
28 |
+
x: input.
|
29 |
+
b: multihead attention module.
|
30 |
+
"""
|
31 |
+
|
32 |
+
x_ = b.ln_1(x)
|
33 |
+
q, k, v = nnf.linear(x_, b.attn.in_proj_weight, b.attn.in_proj_bias).chunk(3, dim=-1)
|
34 |
+
tgt_len, bsz, embed_dim = q.size()
|
35 |
+
|
36 |
+
head_dim = embed_dim // b.attn.num_heads
|
37 |
+
scaling = float(head_dim) ** -0.5
|
38 |
+
|
39 |
+
q = q.contiguous().view(tgt_len, bsz * b.attn.num_heads, b.attn.head_dim).transpose(0, 1)
|
40 |
+
k = k.contiguous().view(-1, bsz * b.attn.num_heads, b.attn.head_dim).transpose(0, 1)
|
41 |
+
v = v.contiguous().view(-1, bsz * b.attn.num_heads, b.attn.head_dim).transpose(0, 1)
|
42 |
+
|
43 |
+
q = q * scaling
|
44 |
+
|
45 |
+
attn_output_weights = torch.bmm(q, k.transpose(1, 2)) # n_heads * batch_size, tokens^2, tokens^2
|
46 |
+
if attn_mask is not None:
|
47 |
+
|
48 |
+
|
49 |
+
attn_mask_type, attn_mask = attn_mask
|
50 |
+
n_heads = attn_output_weights.size(0) // attn_mask.size(0)
|
51 |
+
attn_mask = attn_mask.repeat(n_heads, 1)
|
52 |
+
|
53 |
+
if attn_mask_type == 'cls_token':
|
54 |
+
# the mask only affects similarities compared to the readout-token.
|
55 |
+
attn_output_weights[:, 0, 1:] = attn_output_weights[:, 0, 1:] * attn_mask[None,...]
|
56 |
+
# attn_output_weights[:, 0, 0] = 0*attn_output_weights[:, 0, 0]
|
57 |
+
|
58 |
+
if attn_mask_type == 'all':
|
59 |
+
# print(attn_output_weights.shape, attn_mask[:, None].shape)
|
60 |
+
attn_output_weights[:, 1:, 1:] = attn_output_weights[:, 1:, 1:] * attn_mask[:, None]
|
61 |
+
|
62 |
+
|
63 |
+
attn_output_weights = torch.softmax(attn_output_weights, dim=-1)
|
64 |
+
|
65 |
+
attn_output = torch.bmm(attn_output_weights, v)
|
66 |
+
attn_output = attn_output.transpose(0, 1).contiguous().view(tgt_len, bsz, embed_dim)
|
67 |
+
attn_output = b.attn.out_proj(attn_output)
|
68 |
+
|
69 |
+
x = x + attn_output
|
70 |
+
x = x + b.mlp(b.ln_2(x))
|
71 |
+
|
72 |
+
if with_aff:
|
73 |
+
return x, attn_output_weights
|
74 |
+
else:
|
75 |
+
return x
|
76 |
+
|
77 |
+
|
78 |
+
class CLIPDenseBase(nn.Module):
|
79 |
+
|
80 |
+
def __init__(self, version, reduce_cond, reduce_dim, prompt, n_tokens):
|
81 |
+
super().__init__()
|
82 |
+
|
83 |
+
import clip
|
84 |
+
|
85 |
+
# prec = torch.FloatTensor
|
86 |
+
self.clip_model, _ = clip.load(version, device='cpu', jit=False)
|
87 |
+
self.model = self.clip_model.visual
|
88 |
+
|
89 |
+
# if not None, scale conv weights such that we obtain n_tokens.
|
90 |
+
self.n_tokens = n_tokens
|
91 |
+
|
92 |
+
for p in self.clip_model.parameters():
|
93 |
+
p.requires_grad_(False)
|
94 |
+
|
95 |
+
# conditional
|
96 |
+
if reduce_cond is not None:
|
97 |
+
self.reduce_cond = nn.Linear(512, reduce_cond)
|
98 |
+
for p in self.reduce_cond.parameters():
|
99 |
+
p.requires_grad_(False)
|
100 |
+
else:
|
101 |
+
self.reduce_cond = None
|
102 |
+
|
103 |
+
self.film_mul = nn.Linear(512 if reduce_cond is None else reduce_cond, reduce_dim)
|
104 |
+
self.film_add = nn.Linear(512 if reduce_cond is None else reduce_cond, reduce_dim)
|
105 |
+
|
106 |
+
self.reduce = nn.Linear(768, reduce_dim)
|
107 |
+
|
108 |
+
self.prompt_list = get_prompt_list(prompt)
|
109 |
+
|
110 |
+
# precomputed prompts
|
111 |
+
import pickle
|
112 |
+
if isfile('precomputed_prompt_vectors.pickle'):
|
113 |
+
precomp = pickle.load(open('precomputed_prompt_vectors.pickle', 'rb'))
|
114 |
+
self.precomputed_prompts = {k: torch.from_numpy(v) for k, v in precomp.items()}
|
115 |
+
else:
|
116 |
+
self.precomputed_prompts = dict()
|
117 |
+
|
118 |
+
def rescaled_pos_emb(self, new_size):
|
119 |
+
assert len(new_size) == 2
|
120 |
+
|
121 |
+
a = self.model.positional_embedding[1:].T.view(1, 768, *self.token_shape)
|
122 |
+
b = nnf.interpolate(a, new_size, mode='bicubic', align_corners=False).squeeze(0).view(768, new_size[0]*new_size[1]).T
|
123 |
+
return torch.cat([self.model.positional_embedding[:1], b])
|
124 |
+
|
125 |
+
def visual_forward(self, x_inp, extract_layers=(), skip=False, mask=None):
|
126 |
+
|
127 |
+
|
128 |
+
with torch.no_grad():
|
129 |
+
|
130 |
+
inp_size = x_inp.shape[2:]
|
131 |
+
|
132 |
+
if self.n_tokens is not None:
|
133 |
+
stride2 = x_inp.shape[2] // self.n_tokens
|
134 |
+
conv_weight2 = nnf.interpolate(self.model.conv1.weight, (stride2, stride2), mode='bilinear', align_corners=True)
|
135 |
+
x = nnf.conv2d(x_inp, conv_weight2, bias=self.model.conv1.bias, stride=stride2, dilation=self.model.conv1.dilation)
|
136 |
+
else:
|
137 |
+
x = self.model.conv1(x_inp) # shape = [*, width, grid, grid]
|
138 |
+
|
139 |
+
x = x.reshape(x.shape[0], x.shape[1], -1) # shape = [*, width, grid ** 2]
|
140 |
+
x = x.permute(0, 2, 1) # shape = [*, grid ** 2, width]
|
141 |
+
|
142 |
+
x = torch.cat([self.model.class_embedding.to(x.dtype) + torch.zeros(x.shape[0], 1, x.shape[-1], dtype=x.dtype, device=x.device), x], dim=1) # shape = [*, grid ** 2 + 1, width]
|
143 |
+
|
144 |
+
standard_n_tokens = 50 if self.model.conv1.kernel_size[0] == 32 else 197
|
145 |
+
|
146 |
+
if x.shape[1] != standard_n_tokens:
|
147 |
+
new_shape = int(math.sqrt(x.shape[1]-1))
|
148 |
+
x = x + self.rescaled_pos_emb((new_shape, new_shape)).to(x.dtype)[None,:,:]
|
149 |
+
else:
|
150 |
+
x = x + self.model.positional_embedding.to(x.dtype)
|
151 |
+
|
152 |
+
x = self.model.ln_pre(x)
|
153 |
+
|
154 |
+
x = x.permute(1, 0, 2) # NLD -> LND
|
155 |
+
|
156 |
+
activations, affinities = [], []
|
157 |
+
for i, res_block in enumerate(self.model.transformer.resblocks):
|
158 |
+
|
159 |
+
if mask is not None:
|
160 |
+
mask_layer, mask_type, mask_tensor = mask
|
161 |
+
if mask_layer == i or mask_layer == 'all':
|
162 |
+
# import ipdb; ipdb.set_trace()
|
163 |
+
size = int(math.sqrt(x.shape[0] - 1))
|
164 |
+
|
165 |
+
attn_mask = (mask_type, nnf.interpolate(mask_tensor.unsqueeze(1).float(), (size, size)).view(mask_tensor.shape[0], size * size))
|
166 |
+
|
167 |
+
else:
|
168 |
+
attn_mask = None
|
169 |
+
else:
|
170 |
+
attn_mask = None
|
171 |
+
|
172 |
+
x, aff_per_head = forward_multihead_attention(x, res_block, with_aff=True, attn_mask=attn_mask)
|
173 |
+
|
174 |
+
if i in extract_layers:
|
175 |
+
affinities += [aff_per_head]
|
176 |
+
|
177 |
+
#if self.n_tokens is not None:
|
178 |
+
# activations += [nnf.interpolate(x, inp_size, mode='bilinear', align_corners=True)]
|
179 |
+
#else:
|
180 |
+
activations += [x]
|
181 |
+
|
182 |
+
if len(extract_layers) > 0 and i == max(extract_layers) and skip:
|
183 |
+
print('early skip')
|
184 |
+
break
|
185 |
+
|
186 |
+
x = x.permute(1, 0, 2) # LND -> NLD
|
187 |
+
x = self.model.ln_post(x[:, 0, :])
|
188 |
+
|
189 |
+
if self.model.proj is not None:
|
190 |
+
x = x @ self.model.proj
|
191 |
+
|
192 |
+
return x, activations, affinities
|
193 |
+
|
194 |
+
def sample_prompts(self, words, prompt_list=None):
|
195 |
+
|
196 |
+
prompt_list = prompt_list if prompt_list is not None else self.prompt_list
|
197 |
+
|
198 |
+
prompt_indices = torch.multinomial(torch.ones(len(prompt_list)), len(words), replacement=True)
|
199 |
+
prompts = [prompt_list[i] for i in prompt_indices]
|
200 |
+
return [promt.format(w) for promt, w in zip(prompts, words)]
|
201 |
+
|
202 |
+
def get_cond_vec(self, conditional, batch_size):
|
203 |
+
# compute conditional from a single string
|
204 |
+
if conditional is not None and type(conditional) == str:
|
205 |
+
cond = self.compute_conditional(conditional)
|
206 |
+
cond = cond.repeat(batch_size, 1)
|
207 |
+
|
208 |
+
# compute conditional from string list/tuple
|
209 |
+
elif conditional is not None and type(conditional) in {list, tuple} and type(conditional[0]) == str:
|
210 |
+
assert len(conditional) == batch_size
|
211 |
+
cond = self.compute_conditional(conditional)
|
212 |
+
|
213 |
+
# use conditional directly
|
214 |
+
elif conditional is not None and type(conditional) == torch.Tensor and conditional.ndim == 2:
|
215 |
+
cond = conditional
|
216 |
+
|
217 |
+
# compute conditional from image
|
218 |
+
elif conditional is not None and type(conditional) == torch.Tensor:
|
219 |
+
with torch.no_grad():
|
220 |
+
cond, _, _ = self.visual_forward(conditional)
|
221 |
+
else:
|
222 |
+
raise ValueError('invalid conditional')
|
223 |
+
return cond
|
224 |
+
|
225 |
+
def compute_conditional(self, conditional):
|
226 |
+
import clip
|
227 |
+
|
228 |
+
dev = next(self.parameters()).device
|
229 |
+
|
230 |
+
if type(conditional) in {list, tuple}:
|
231 |
+
text_tokens = clip.tokenize(conditional).to(dev)
|
232 |
+
cond = self.clip_model.encode_text(text_tokens)
|
233 |
+
else:
|
234 |
+
if conditional in self.precomputed_prompts:
|
235 |
+
cond = self.precomputed_prompts[conditional].float().to(dev)
|
236 |
+
else:
|
237 |
+
text_tokens = clip.tokenize([conditional]).to(dev)
|
238 |
+
cond = self.clip_model.encode_text(text_tokens)[0]
|
239 |
+
|
240 |
+
if self.shift_vector is not None:
|
241 |
+
return cond + self.shift_vector
|
242 |
+
else:
|
243 |
+
return cond
|
244 |
+
|
245 |
+
|
246 |
+
def clip_load_untrained(version):
|
247 |
+
assert version == 'ViT-B/16'
|
248 |
+
from clip.model import CLIP
|
249 |
+
from clip.clip import _MODELS, _download
|
250 |
+
model = torch.jit.load(_download(_MODELS['ViT-B/16'])).eval()
|
251 |
+
state_dict = model.state_dict()
|
252 |
+
|
253 |
+
vision_width = state_dict["visual.conv1.weight"].shape[0]
|
254 |
+
vision_layers = len([k for k in state_dict.keys() if k.startswith("visual.") and k.endswith(".attn.in_proj_weight")])
|
255 |
+
vision_patch_size = state_dict["visual.conv1.weight"].shape[-1]
|
256 |
+
grid_size = round((state_dict["visual.positional_embedding"].shape[0] - 1) ** 0.5)
|
257 |
+
image_resolution = vision_patch_size * grid_size
|
258 |
+
embed_dim = state_dict["text_projection"].shape[1]
|
259 |
+
context_length = state_dict["positional_embedding"].shape[0]
|
260 |
+
vocab_size = state_dict["token_embedding.weight"].shape[0]
|
261 |
+
transformer_width = state_dict["ln_final.weight"].shape[0]
|
262 |
+
transformer_heads = transformer_width // 64
|
263 |
+
transformer_layers = len(set(k.split(".")[2] for k in state_dict if k.startswith(f"transformer.resblocks")))
|
264 |
+
|
265 |
+
return CLIP(embed_dim, image_resolution, vision_layers, vision_width, vision_patch_size,
|
266 |
+
context_length, vocab_size, transformer_width, transformer_heads, transformer_layers)
|
267 |
+
|
268 |
+
|
269 |
+
class CLIPDensePredT(CLIPDenseBase):
|
270 |
+
|
271 |
+
def __init__(self, version='ViT-B/32', extract_layers=(3, 6, 9), cond_layer=0, reduce_dim=128, n_heads=4, prompt='fixed',
|
272 |
+
extra_blocks=0, reduce_cond=None, fix_shift=False,
|
273 |
+
learn_trans_conv_only=False, limit_to_clip_only=False, upsample=False,
|
274 |
+
add_calibration=False, rev_activations=False, trans_conv=None, n_tokens=None, complex_trans_conv=False):
|
275 |
+
|
276 |
+
super().__init__(version, reduce_cond, reduce_dim, prompt, n_tokens)
|
277 |
+
# device = 'cpu'
|
278 |
+
|
279 |
+
self.extract_layers = extract_layers
|
280 |
+
self.cond_layer = cond_layer
|
281 |
+
self.limit_to_clip_only = limit_to_clip_only
|
282 |
+
self.process_cond = None
|
283 |
+
self.rev_activations = rev_activations
|
284 |
+
|
285 |
+
depth = len(extract_layers)
|
286 |
+
|
287 |
+
if add_calibration:
|
288 |
+
self.calibration_conds = 1
|
289 |
+
|
290 |
+
self.upsample_proj = nn.Conv2d(reduce_dim, 1, kernel_size=1) if upsample else None
|
291 |
+
|
292 |
+
self.add_activation1 = True
|
293 |
+
|
294 |
+
self.version = version
|
295 |
+
|
296 |
+
self.token_shape = {'ViT-B/32': (7, 7), 'ViT-B/16': (14, 14)}[version]
|
297 |
+
|
298 |
+
if fix_shift:
|
299 |
+
# self.shift_vector = nn.Parameter(torch.load(join(dirname(basename(__file__)), 'clip_text_shift_vector.pth')), requires_grad=False)
|
300 |
+
self.shift_vector = nn.Parameter(torch.load(join(dirname(basename(__file__)), 'shift_text_to_vis.pth')), requires_grad=False)
|
301 |
+
# self.shift_vector = nn.Parameter(-1*torch.load(join(dirname(basename(__file__)), 'shift2.pth')), requires_grad=False)
|
302 |
+
else:
|
303 |
+
self.shift_vector = None
|
304 |
+
|
305 |
+
if trans_conv is None:
|
306 |
+
trans_conv_ks = {'ViT-B/32': (32, 32), 'ViT-B/16': (16, 16)}[version]
|
307 |
+
else:
|
308 |
+
# explicitly define transposed conv kernel size
|
309 |
+
trans_conv_ks = (trans_conv, trans_conv)
|
310 |
+
|
311 |
+
if not complex_trans_conv:
|
312 |
+
self.trans_conv = nn.ConvTranspose2d(reduce_dim, 1, trans_conv_ks, stride=trans_conv_ks)
|
313 |
+
else:
|
314 |
+
assert trans_conv_ks[0] == trans_conv_ks[1]
|
315 |
+
|
316 |
+
tp_kernels = (trans_conv_ks[0] // 4, trans_conv_ks[0] // 4)
|
317 |
+
|
318 |
+
self.trans_conv = nn.Sequential(
|
319 |
+
nn.Conv2d(reduce_dim, reduce_dim, kernel_size=3, padding=1),
|
320 |
+
nn.ReLU(),
|
321 |
+
nn.ConvTranspose2d(reduce_dim, reduce_dim // 2, kernel_size=tp_kernels[0], stride=tp_kernels[0]),
|
322 |
+
nn.ReLU(),
|
323 |
+
nn.ConvTranspose2d(reduce_dim // 2, 1, kernel_size=tp_kernels[1], stride=tp_kernels[1]),
|
324 |
+
)
|
325 |
+
|
326 |
+
# self.trans_conv = nn.ConvTranspose2d(reduce_dim, 1, trans_conv_ks, stride=trans_conv_ks)
|
327 |
+
|
328 |
+
assert len(self.extract_layers) == depth
|
329 |
+
|
330 |
+
self.reduces = nn.ModuleList([nn.Linear(768, reduce_dim) for _ in range(depth)])
|
331 |
+
self.blocks = nn.ModuleList([nn.TransformerEncoderLayer(d_model=reduce_dim, nhead=n_heads) for _ in range(len(self.extract_layers))])
|
332 |
+
self.extra_blocks = nn.ModuleList([nn.TransformerEncoderLayer(d_model=reduce_dim, nhead=n_heads) for _ in range(extra_blocks)])
|
333 |
+
|
334 |
+
# refinement and trans conv
|
335 |
+
|
336 |
+
if learn_trans_conv_only:
|
337 |
+
for p in self.parameters():
|
338 |
+
p.requires_grad_(False)
|
339 |
+
|
340 |
+
for p in self.trans_conv.parameters():
|
341 |
+
p.requires_grad_(True)
|
342 |
+
|
343 |
+
self.prompt_list = get_prompt_list(prompt)
|
344 |
+
|
345 |
+
|
346 |
+
def forward(self, inp_image, conditional=None, return_features=False, mask=None):
|
347 |
+
|
348 |
+
assert type(return_features) == bool
|
349 |
+
|
350 |
+
inp_image = inp_image.to(self.model.positional_embedding.device)
|
351 |
+
|
352 |
+
if mask is not None:
|
353 |
+
raise ValueError('mask not supported')
|
354 |
+
|
355 |
+
# x_inp = normalize(inp_image)
|
356 |
+
x_inp = inp_image
|
357 |
+
|
358 |
+
bs, dev = inp_image.shape[0], x_inp.device
|
359 |
+
|
360 |
+
cond = self.get_cond_vec(conditional, bs)
|
361 |
+
|
362 |
+
visual_q, activations, _ = self.visual_forward(x_inp, extract_layers=[0] + list(self.extract_layers))
|
363 |
+
|
364 |
+
activation1 = activations[0]
|
365 |
+
activations = activations[1:]
|
366 |
+
|
367 |
+
_activations = activations[::-1] if not self.rev_activations else activations
|
368 |
+
|
369 |
+
a = None
|
370 |
+
for i, (activation, block, reduce) in enumerate(zip(_activations, self.blocks, self.reduces)):
|
371 |
+
|
372 |
+
if a is not None:
|
373 |
+
a = reduce(activation) + a
|
374 |
+
else:
|
375 |
+
a = reduce(activation)
|
376 |
+
|
377 |
+
if i == self.cond_layer:
|
378 |
+
if self.reduce_cond is not None:
|
379 |
+
cond = self.reduce_cond(cond)
|
380 |
+
|
381 |
+
a = self.film_mul(cond) * a + self.film_add(cond)
|
382 |
+
|
383 |
+
a = block(a)
|
384 |
+
|
385 |
+
for block in self.extra_blocks:
|
386 |
+
a = a + block(a)
|
387 |
+
|
388 |
+
a = a[1:].permute(1, 2, 0) # rm cls token and -> BS, Feats, Tokens
|
389 |
+
|
390 |
+
size = int(math.sqrt(a.shape[2]))
|
391 |
+
|
392 |
+
a = a.view(bs, a.shape[1], size, size)
|
393 |
+
|
394 |
+
a = self.trans_conv(a)
|
395 |
+
|
396 |
+
if self.n_tokens is not None:
|
397 |
+
a = nnf.interpolate(a, x_inp.shape[2:], mode='bilinear', align_corners=True)
|
398 |
+
|
399 |
+
if self.upsample_proj is not None:
|
400 |
+
a = self.upsample_proj(a)
|
401 |
+
a = nnf.interpolate(a, x_inp.shape[2:], mode='bilinear')
|
402 |
+
|
403 |
+
if return_features:
|
404 |
+
return a, visual_q, cond, [activation1] + activations
|
405 |
+
else:
|
406 |
+
return a,
|
407 |
+
|
408 |
+
|
409 |
+
|
410 |
+
class CLIPDensePredTMasked(CLIPDensePredT):
|
411 |
+
|
412 |
+
def __init__(self, version='ViT-B/32', extract_layers=(3, 6, 9), cond_layer=0, reduce_dim=128, n_heads=4,
|
413 |
+
prompt='fixed', extra_blocks=0, reduce_cond=None, fix_shift=False, learn_trans_conv_only=False,
|
414 |
+
refine=None, limit_to_clip_only=False, upsample=False, add_calibration=False, n_tokens=None):
|
415 |
+
|
416 |
+
super().__init__(version=version, extract_layers=extract_layers, cond_layer=cond_layer, reduce_dim=reduce_dim,
|
417 |
+
n_heads=n_heads, prompt=prompt, extra_blocks=extra_blocks, reduce_cond=reduce_cond,
|
418 |
+
fix_shift=fix_shift, learn_trans_conv_only=learn_trans_conv_only,
|
419 |
+
limit_to_clip_only=limit_to_clip_only, upsample=upsample, add_calibration=add_calibration,
|
420 |
+
n_tokens=n_tokens)
|
421 |
+
|
422 |
+
def visual_forward_masked(self, img_s, seg_s):
|
423 |
+
return super().visual_forward(img_s, mask=('all', 'cls_token', seg_s))
|
424 |
+
|
425 |
+
def forward(self, img_q, cond_or_img_s, seg_s=None, return_features=False):
|
426 |
+
|
427 |
+
if seg_s is None:
|
428 |
+
cond = cond_or_img_s
|
429 |
+
else:
|
430 |
+
img_s = cond_or_img_s
|
431 |
+
|
432 |
+
with torch.no_grad():
|
433 |
+
cond, _, _ = self.visual_forward_masked(img_s, seg_s)
|
434 |
+
|
435 |
+
return super().forward(img_q, cond, return_features=return_features)
|
436 |
+
|
437 |
+
|
438 |
+
|
439 |
+
class CLIPDenseBaseline(CLIPDenseBase):
|
440 |
+
|
441 |
+
def __init__(self, version='ViT-B/32', cond_layer=0,
|
442 |
+
extract_layer=9, reduce_dim=128, reduce2_dim=None, prompt='fixed',
|
443 |
+
reduce_cond=None, limit_to_clip_only=False, n_tokens=None):
|
444 |
+
|
445 |
+
super().__init__(version, reduce_cond, reduce_dim, prompt, n_tokens)
|
446 |
+
device = 'cpu'
|
447 |
+
|
448 |
+
# self.cond_layer = cond_layer
|
449 |
+
self.extract_layer = extract_layer
|
450 |
+
self.limit_to_clip_only = limit_to_clip_only
|
451 |
+
self.shift_vector = None
|
452 |
+
|
453 |
+
self.token_shape = {'ViT-B/32': (7, 7), 'ViT-B/16': (14, 14)}[version]
|
454 |
+
|
455 |
+
assert reduce2_dim is not None
|
456 |
+
|
457 |
+
self.reduce2 = nn.Sequential(
|
458 |
+
nn.Linear(reduce_dim, reduce2_dim),
|
459 |
+
nn.ReLU(),
|
460 |
+
nn.Linear(reduce2_dim, reduce_dim)
|
461 |
+
)
|
462 |
+
|
463 |
+
trans_conv_ks = {'ViT-B/32': (32, 32), 'ViT-B/16': (16, 16)}[version]
|
464 |
+
self.trans_conv = nn.ConvTranspose2d(reduce_dim, 1, trans_conv_ks, stride=trans_conv_ks)
|
465 |
+
|
466 |
+
|
467 |
+
def forward(self, inp_image, conditional=None, return_features=False):
|
468 |
+
|
469 |
+
inp_image = inp_image.to(self.model.positional_embedding.device)
|
470 |
+
|
471 |
+
# x_inp = normalize(inp_image)
|
472 |
+
x_inp = inp_image
|
473 |
+
|
474 |
+
bs, dev = inp_image.shape[0], x_inp.device
|
475 |
+
|
476 |
+
cond = self.get_cond_vec(conditional, bs)
|
477 |
+
|
478 |
+
visual_q, activations, affinities = self.visual_forward(x_inp, extract_layers=[self.extract_layer])
|
479 |
+
|
480 |
+
a = activations[0]
|
481 |
+
a = self.reduce(a)
|
482 |
+
a = self.film_mul(cond) * a + self.film_add(cond)
|
483 |
+
|
484 |
+
if self.reduce2 is not None:
|
485 |
+
a = self.reduce2(a)
|
486 |
+
|
487 |
+
# the original model would execute a transformer block here
|
488 |
+
|
489 |
+
a = a[1:].permute(1, 2, 0) # rm cls token and -> BS, Feats, Tokens
|
490 |
+
|
491 |
+
size = int(math.sqrt(a.shape[2]))
|
492 |
+
|
493 |
+
a = a.view(bs, a.shape[1], size, size)
|
494 |
+
a = self.trans_conv(a)
|
495 |
+
|
496 |
+
if return_features:
|
497 |
+
return a, visual_q, cond, activations
|
498 |
+
else:
|
499 |
+
return a,
|
500 |
+
|
501 |
+
|
502 |
+
class CLIPSegMultiLabel(nn.Module):
|
503 |
+
|
504 |
+
def __init__(self, model) -> None:
|
505 |
+
super().__init__()
|
506 |
+
|
507 |
+
from third_party.JoEm.data_loader import get_seen_idx, get_unseen_idx, VOC
|
508 |
+
|
509 |
+
self.pascal_classes = VOC
|
510 |
+
|
511 |
+
from clip.clipseg import CLIPDensePredT
|
512 |
+
from general_utils import load_model
|
513 |
+
# self.clipseg = load_model('rd64-vit16-neg0.2-phrasecut', strict=False)
|
514 |
+
self.clipseg = load_model(model, strict=False)
|
515 |
+
|
516 |
+
self.clipseg.eval()
|
517 |
+
|
518 |
+
def forward(self, x):
|
519 |
+
|
520 |
+
bs = x.shape[0]
|
521 |
+
out = torch.ones(21, bs, 352, 352).to(x.device) * -10
|
522 |
+
|
523 |
+
for class_id, class_name in enumerate(self.pascal_classes):
|
524 |
+
|
525 |
+
fac = 3 if class_name == 'background' else 1
|
526 |
+
|
527 |
+
with torch.no_grad():
|
528 |
+
pred = torch.sigmoid(self.clipseg(x, class_name)[0][:,0]) * fac
|
529 |
+
|
530 |
+
out[class_id] += pred
|
531 |
+
|
532 |
+
|
533 |
+
out = out.permute(1, 0, 2, 3)
|
534 |
+
|
535 |
+
return out
|
536 |
+
|
537 |
+
# construct output tensor
|
538 |
+
|
clip/model.py
ADDED
@@ -0,0 +1,436 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from collections import OrderedDict
|
2 |
+
from typing import Tuple, Union
|
3 |
+
|
4 |
+
import numpy as np
|
5 |
+
import torch
|
6 |
+
import torch.nn.functional as F
|
7 |
+
from torch import nn
|
8 |
+
|
9 |
+
|
10 |
+
class Bottleneck(nn.Module):
|
11 |
+
expansion = 4
|
12 |
+
|
13 |
+
def __init__(self, inplanes, planes, stride=1):
|
14 |
+
super().__init__()
|
15 |
+
|
16 |
+
# all conv layers have stride 1. an avgpool is performed after the second convolution when stride > 1
|
17 |
+
self.conv1 = nn.Conv2d(inplanes, planes, 1, bias=False)
|
18 |
+
self.bn1 = nn.BatchNorm2d(planes)
|
19 |
+
self.relu1 = nn.ReLU(inplace=True)
|
20 |
+
|
21 |
+
self.conv2 = nn.Conv2d(planes, planes, 3, padding=1, bias=False)
|
22 |
+
self.bn2 = nn.BatchNorm2d(planes)
|
23 |
+
self.relu2 = nn.ReLU(inplace=True)
|
24 |
+
|
25 |
+
self.avgpool = nn.AvgPool2d(stride) if stride > 1 else nn.Identity()
|
26 |
+
|
27 |
+
self.conv3 = nn.Conv2d(planes, planes * self.expansion, 1, bias=False)
|
28 |
+
self.bn3 = nn.BatchNorm2d(planes * self.expansion)
|
29 |
+
self.relu3 = nn.ReLU(inplace=True)
|
30 |
+
|
31 |
+
self.downsample = None
|
32 |
+
self.stride = stride
|
33 |
+
|
34 |
+
if stride > 1 or inplanes != planes * Bottleneck.expansion:
|
35 |
+
# downsampling layer is prepended with an avgpool, and the subsequent convolution has stride 1
|
36 |
+
self.downsample = nn.Sequential(OrderedDict([
|
37 |
+
("-1", nn.AvgPool2d(stride)),
|
38 |
+
("0", nn.Conv2d(inplanes, planes * self.expansion, 1, stride=1, bias=False)),
|
39 |
+
("1", nn.BatchNorm2d(planes * self.expansion))
|
40 |
+
]))
|
41 |
+
|
42 |
+
def forward(self, x: torch.Tensor):
|
43 |
+
identity = x
|
44 |
+
|
45 |
+
out = self.relu1(self.bn1(self.conv1(x)))
|
46 |
+
out = self.relu2(self.bn2(self.conv2(out)))
|
47 |
+
out = self.avgpool(out)
|
48 |
+
out = self.bn3(self.conv3(out))
|
49 |
+
|
50 |
+
if self.downsample is not None:
|
51 |
+
identity = self.downsample(x)
|
52 |
+
|
53 |
+
out += identity
|
54 |
+
out = self.relu3(out)
|
55 |
+
return out
|
56 |
+
|
57 |
+
|
58 |
+
class AttentionPool2d(nn.Module):
|
59 |
+
def __init__(self, spacial_dim: int, embed_dim: int, num_heads: int, output_dim: int = None):
|
60 |
+
super().__init__()
|
61 |
+
self.positional_embedding = nn.Parameter(torch.randn(spacial_dim ** 2 + 1, embed_dim) / embed_dim ** 0.5)
|
62 |
+
self.k_proj = nn.Linear(embed_dim, embed_dim)
|
63 |
+
self.q_proj = nn.Linear(embed_dim, embed_dim)
|
64 |
+
self.v_proj = nn.Linear(embed_dim, embed_dim)
|
65 |
+
self.c_proj = nn.Linear(embed_dim, output_dim or embed_dim)
|
66 |
+
self.num_heads = num_heads
|
67 |
+
|
68 |
+
def forward(self, x):
|
69 |
+
x = x.flatten(start_dim=2).permute(2, 0, 1) # NCHW -> (HW)NC
|
70 |
+
x = torch.cat([x.mean(dim=0, keepdim=True), x], dim=0) # (HW+1)NC
|
71 |
+
x = x + self.positional_embedding[:, None, :].to(x.dtype) # (HW+1)NC
|
72 |
+
x, _ = F.multi_head_attention_forward(
|
73 |
+
query=x[:1], key=x, value=x,
|
74 |
+
embed_dim_to_check=x.shape[-1],
|
75 |
+
num_heads=self.num_heads,
|
76 |
+
q_proj_weight=self.q_proj.weight,
|
77 |
+
k_proj_weight=self.k_proj.weight,
|
78 |
+
v_proj_weight=self.v_proj.weight,
|
79 |
+
in_proj_weight=None,
|
80 |
+
in_proj_bias=torch.cat([self.q_proj.bias, self.k_proj.bias, self.v_proj.bias]),
|
81 |
+
bias_k=None,
|
82 |
+
bias_v=None,
|
83 |
+
add_zero_attn=False,
|
84 |
+
dropout_p=0,
|
85 |
+
out_proj_weight=self.c_proj.weight,
|
86 |
+
out_proj_bias=self.c_proj.bias,
|
87 |
+
use_separate_proj_weight=True,
|
88 |
+
training=self.training,
|
89 |
+
need_weights=False
|
90 |
+
)
|
91 |
+
return x.squeeze(0)
|
92 |
+
|
93 |
+
|
94 |
+
class ModifiedResNet(nn.Module):
|
95 |
+
"""
|
96 |
+
A ResNet class that is similar to torchvision's but contains the following changes:
|
97 |
+
- There are now 3 "stem" convolutions as opposed to 1, with an average pool instead of a max pool.
|
98 |
+
- Performs anti-aliasing strided convolutions, where an avgpool is prepended to convolutions with stride > 1
|
99 |
+
- The final pooling layer is a QKV attention instead of an average pool
|
100 |
+
"""
|
101 |
+
|
102 |
+
def __init__(self, layers, output_dim, heads, input_resolution=224, width=64):
|
103 |
+
super().__init__()
|
104 |
+
self.output_dim = output_dim
|
105 |
+
self.input_resolution = input_resolution
|
106 |
+
|
107 |
+
# the 3-layer stem
|
108 |
+
self.conv1 = nn.Conv2d(3, width // 2, kernel_size=3, stride=2, padding=1, bias=False)
|
109 |
+
self.bn1 = nn.BatchNorm2d(width // 2)
|
110 |
+
self.relu1 = nn.ReLU(inplace=True)
|
111 |
+
self.conv2 = nn.Conv2d(width // 2, width // 2, kernel_size=3, padding=1, bias=False)
|
112 |
+
self.bn2 = nn.BatchNorm2d(width // 2)
|
113 |
+
self.relu2 = nn.ReLU(inplace=True)
|
114 |
+
self.conv3 = nn.Conv2d(width // 2, width, kernel_size=3, padding=1, bias=False)
|
115 |
+
self.bn3 = nn.BatchNorm2d(width)
|
116 |
+
self.relu3 = nn.ReLU(inplace=True)
|
117 |
+
self.avgpool = nn.AvgPool2d(2)
|
118 |
+
|
119 |
+
# residual layers
|
120 |
+
self._inplanes = width # this is a *mutable* variable used during construction
|
121 |
+
self.layer1 = self._make_layer(width, layers[0])
|
122 |
+
self.layer2 = self._make_layer(width * 2, layers[1], stride=2)
|
123 |
+
self.layer3 = self._make_layer(width * 4, layers[2], stride=2)
|
124 |
+
self.layer4 = self._make_layer(width * 8, layers[3], stride=2)
|
125 |
+
|
126 |
+
embed_dim = width * 32 # the ResNet feature dimension
|
127 |
+
self.attnpool = AttentionPool2d(input_resolution // 32, embed_dim, heads, output_dim)
|
128 |
+
|
129 |
+
def _make_layer(self, planes, blocks, stride=1):
|
130 |
+
layers = [Bottleneck(self._inplanes, planes, stride)]
|
131 |
+
|
132 |
+
self._inplanes = planes * Bottleneck.expansion
|
133 |
+
for _ in range(1, blocks):
|
134 |
+
layers.append(Bottleneck(self._inplanes, planes))
|
135 |
+
|
136 |
+
return nn.Sequential(*layers)
|
137 |
+
|
138 |
+
def forward(self, x):
|
139 |
+
def stem(x):
|
140 |
+
x = self.relu1(self.bn1(self.conv1(x)))
|
141 |
+
x = self.relu2(self.bn2(self.conv2(x)))
|
142 |
+
x = self.relu3(self.bn3(self.conv3(x)))
|
143 |
+
x = self.avgpool(x)
|
144 |
+
return x
|
145 |
+
|
146 |
+
x = x.type(self.conv1.weight.dtype)
|
147 |
+
x = stem(x)
|
148 |
+
x = self.layer1(x)
|
149 |
+
x = self.layer2(x)
|
150 |
+
x = self.layer3(x)
|
151 |
+
x = self.layer4(x)
|
152 |
+
x = self.attnpool(x)
|
153 |
+
|
154 |
+
return x
|
155 |
+
|
156 |
+
|
157 |
+
class LayerNorm(nn.LayerNorm):
|
158 |
+
"""Subclass torch's LayerNorm to handle fp16."""
|
159 |
+
|
160 |
+
def forward(self, x: torch.Tensor):
|
161 |
+
orig_type = x.dtype
|
162 |
+
ret = super().forward(x.type(torch.float32))
|
163 |
+
return ret.type(orig_type)
|
164 |
+
|
165 |
+
|
166 |
+
class QuickGELU(nn.Module):
|
167 |
+
def forward(self, x: torch.Tensor):
|
168 |
+
return x * torch.sigmoid(1.702 * x)
|
169 |
+
|
170 |
+
|
171 |
+
class ResidualAttentionBlock(nn.Module):
|
172 |
+
def __init__(self, d_model: int, n_head: int, attn_mask: torch.Tensor = None):
|
173 |
+
super().__init__()
|
174 |
+
|
175 |
+
self.attn = nn.MultiheadAttention(d_model, n_head)
|
176 |
+
self.ln_1 = LayerNorm(d_model)
|
177 |
+
self.mlp = nn.Sequential(OrderedDict([
|
178 |
+
("c_fc", nn.Linear(d_model, d_model * 4)),
|
179 |
+
("gelu", QuickGELU()),
|
180 |
+
("c_proj", nn.Linear(d_model * 4, d_model))
|
181 |
+
]))
|
182 |
+
self.ln_2 = LayerNorm(d_model)
|
183 |
+
self.attn_mask = attn_mask
|
184 |
+
|
185 |
+
def attention(self, x: torch.Tensor):
|
186 |
+
self.attn_mask = self.attn_mask.to(dtype=x.dtype, device=x.device) if self.attn_mask is not None else None
|
187 |
+
return self.attn(x, x, x, need_weights=False, attn_mask=self.attn_mask)[0]
|
188 |
+
|
189 |
+
def forward(self, x: torch.Tensor):
|
190 |
+
x = x + self.attention(self.ln_1(x))
|
191 |
+
x = x + self.mlp(self.ln_2(x))
|
192 |
+
return x
|
193 |
+
|
194 |
+
|
195 |
+
class Transformer(nn.Module):
|
196 |
+
def __init__(self, width: int, layers: int, heads: int, attn_mask: torch.Tensor = None):
|
197 |
+
super().__init__()
|
198 |
+
self.width = width
|
199 |
+
self.layers = layers
|
200 |
+
self.resblocks = nn.Sequential(*[ResidualAttentionBlock(width, heads, attn_mask) for _ in range(layers)])
|
201 |
+
|
202 |
+
def forward(self, x: torch.Tensor):
|
203 |
+
return self.resblocks(x)
|
204 |
+
|
205 |
+
|
206 |
+
class VisionTransformer(nn.Module):
|
207 |
+
def __init__(self, input_resolution: int, patch_size: int, width: int, layers: int, heads: int, output_dim: int):
|
208 |
+
super().__init__()
|
209 |
+
self.input_resolution = input_resolution
|
210 |
+
self.output_dim = output_dim
|
211 |
+
self.conv1 = nn.Conv2d(in_channels=3, out_channels=width, kernel_size=patch_size, stride=patch_size, bias=False)
|
212 |
+
|
213 |
+
scale = width ** -0.5
|
214 |
+
self.class_embedding = nn.Parameter(scale * torch.randn(width))
|
215 |
+
self.positional_embedding = nn.Parameter(scale * torch.randn((input_resolution // patch_size) ** 2 + 1, width))
|
216 |
+
self.ln_pre = LayerNorm(width)
|
217 |
+
|
218 |
+
self.transformer = Transformer(width, layers, heads)
|
219 |
+
|
220 |
+
self.ln_post = LayerNorm(width)
|
221 |
+
self.proj = nn.Parameter(scale * torch.randn(width, output_dim))
|
222 |
+
|
223 |
+
def forward(self, x: torch.Tensor):
|
224 |
+
x = self.conv1(x) # shape = [*, width, grid, grid]
|
225 |
+
x = x.reshape(x.shape[0], x.shape[1], -1) # shape = [*, width, grid ** 2]
|
226 |
+
x = x.permute(0, 2, 1) # shape = [*, grid ** 2, width]
|
227 |
+
x = torch.cat([self.class_embedding.to(x.dtype) + torch.zeros(x.shape[0], 1, x.shape[-1], dtype=x.dtype, device=x.device), x], dim=1) # shape = [*, grid ** 2 + 1, width]
|
228 |
+
x = x + self.positional_embedding.to(x.dtype)
|
229 |
+
x = self.ln_pre(x)
|
230 |
+
|
231 |
+
x = x.permute(1, 0, 2) # NLD -> LND
|
232 |
+
x = self.transformer(x)
|
233 |
+
x = x.permute(1, 0, 2) # LND -> NLD
|
234 |
+
|
235 |
+
x = self.ln_post(x[:, 0, :])
|
236 |
+
|
237 |
+
if self.proj is not None:
|
238 |
+
x = x @ self.proj
|
239 |
+
|
240 |
+
return x
|
241 |
+
|
242 |
+
|
243 |
+
class CLIP(nn.Module):
|
244 |
+
def __init__(self,
|
245 |
+
embed_dim: int,
|
246 |
+
# vision
|
247 |
+
image_resolution: int,
|
248 |
+
vision_layers: Union[Tuple[int, int, int, int], int],
|
249 |
+
vision_width: int,
|
250 |
+
vision_patch_size: int,
|
251 |
+
# text
|
252 |
+
context_length: int,
|
253 |
+
vocab_size: int,
|
254 |
+
transformer_width: int,
|
255 |
+
transformer_heads: int,
|
256 |
+
transformer_layers: int
|
257 |
+
):
|
258 |
+
super().__init__()
|
259 |
+
|
260 |
+
self.context_length = context_length
|
261 |
+
|
262 |
+
if isinstance(vision_layers, (tuple, list)):
|
263 |
+
vision_heads = vision_width * 32 // 64
|
264 |
+
self.visual = ModifiedResNet(
|
265 |
+
layers=vision_layers,
|
266 |
+
output_dim=embed_dim,
|
267 |
+
heads=vision_heads,
|
268 |
+
input_resolution=image_resolution,
|
269 |
+
width=vision_width
|
270 |
+
)
|
271 |
+
else:
|
272 |
+
vision_heads = vision_width // 64
|
273 |
+
self.visual = VisionTransformer(
|
274 |
+
input_resolution=image_resolution,
|
275 |
+
patch_size=vision_patch_size,
|
276 |
+
width=vision_width,
|
277 |
+
layers=vision_layers,
|
278 |
+
heads=vision_heads,
|
279 |
+
output_dim=embed_dim
|
280 |
+
)
|
281 |
+
|
282 |
+
self.transformer = Transformer(
|
283 |
+
width=transformer_width,
|
284 |
+
layers=transformer_layers,
|
285 |
+
heads=transformer_heads,
|
286 |
+
attn_mask=self.build_attention_mask()
|
287 |
+
)
|
288 |
+
|
289 |
+
self.vocab_size = vocab_size
|
290 |
+
self.token_embedding = nn.Embedding(vocab_size, transformer_width)
|
291 |
+
self.positional_embedding = nn.Parameter(torch.empty(self.context_length, transformer_width))
|
292 |
+
self.ln_final = LayerNorm(transformer_width)
|
293 |
+
|
294 |
+
self.text_projection = nn.Parameter(torch.empty(transformer_width, embed_dim))
|
295 |
+
self.logit_scale = nn.Parameter(torch.ones([]) * np.log(1 / 0.07))
|
296 |
+
|
297 |
+
self.initialize_parameters()
|
298 |
+
|
299 |
+
def initialize_parameters(self):
|
300 |
+
nn.init.normal_(self.token_embedding.weight, std=0.02)
|
301 |
+
nn.init.normal_(self.positional_embedding, std=0.01)
|
302 |
+
|
303 |
+
if isinstance(self.visual, ModifiedResNet):
|
304 |
+
if self.visual.attnpool is not None:
|
305 |
+
std = self.visual.attnpool.c_proj.in_features ** -0.5
|
306 |
+
nn.init.normal_(self.visual.attnpool.q_proj.weight, std=std)
|
307 |
+
nn.init.normal_(self.visual.attnpool.k_proj.weight, std=std)
|
308 |
+
nn.init.normal_(self.visual.attnpool.v_proj.weight, std=std)
|
309 |
+
nn.init.normal_(self.visual.attnpool.c_proj.weight, std=std)
|
310 |
+
|
311 |
+
for resnet_block in [self.visual.layer1, self.visual.layer2, self.visual.layer3, self.visual.layer4]:
|
312 |
+
for name, param in resnet_block.named_parameters():
|
313 |
+
if name.endswith("bn3.weight"):
|
314 |
+
nn.init.zeros_(param)
|
315 |
+
|
316 |
+
proj_std = (self.transformer.width ** -0.5) * ((2 * self.transformer.layers) ** -0.5)
|
317 |
+
attn_std = self.transformer.width ** -0.5
|
318 |
+
fc_std = (2 * self.transformer.width) ** -0.5
|
319 |
+
for block in self.transformer.resblocks:
|
320 |
+
nn.init.normal_(block.attn.in_proj_weight, std=attn_std)
|
321 |
+
nn.init.normal_(block.attn.out_proj.weight, std=proj_std)
|
322 |
+
nn.init.normal_(block.mlp.c_fc.weight, std=fc_std)
|
323 |
+
nn.init.normal_(block.mlp.c_proj.weight, std=proj_std)
|
324 |
+
|
325 |
+
if self.text_projection is not None:
|
326 |
+
nn.init.normal_(self.text_projection, std=self.transformer.width ** -0.5)
|
327 |
+
|
328 |
+
def build_attention_mask(self):
|
329 |
+
# lazily create causal attention mask, with full attention between the vision tokens
|
330 |
+
# pytorch uses additive attention mask; fill with -inf
|
331 |
+
mask = torch.empty(self.context_length, self.context_length)
|
332 |
+
mask.fill_(float("-inf"))
|
333 |
+
mask.triu_(1) # zero out the lower diagonal
|
334 |
+
return mask
|
335 |
+
|
336 |
+
@property
|
337 |
+
def dtype(self):
|
338 |
+
return self.visual.conv1.weight.dtype
|
339 |
+
|
340 |
+
def encode_image(self, image):
|
341 |
+
return self.visual(image.type(self.dtype))
|
342 |
+
|
343 |
+
def encode_text(self, text):
|
344 |
+
x = self.token_embedding(text).type(self.dtype) # [batch_size, n_ctx, d_model]
|
345 |
+
|
346 |
+
x = x + self.positional_embedding.type(self.dtype)
|
347 |
+
x = x.permute(1, 0, 2) # NLD -> LND
|
348 |
+
x = self.transformer(x)
|
349 |
+
x = x.permute(1, 0, 2) # LND -> NLD
|
350 |
+
x = self.ln_final(x).type(self.dtype)
|
351 |
+
|
352 |
+
# x.shape = [batch_size, n_ctx, transformer.width]
|
353 |
+
# take features from the eot embedding (eot_token is the highest number in each sequence)
|
354 |
+
x = x[torch.arange(x.shape[0]), text.argmax(dim=-1)] @ self.text_projection
|
355 |
+
|
356 |
+
return x
|
357 |
+
|
358 |
+
def forward(self, image, text):
|
359 |
+
image_features = self.encode_image(image)
|
360 |
+
text_features = self.encode_text(text)
|
361 |
+
|
362 |
+
# normalized features
|
363 |
+
image_features = image_features / image_features.norm(dim=1, keepdim=True)
|
364 |
+
text_features = text_features / text_features.norm(dim=1, keepdim=True)
|
365 |
+
|
366 |
+
# cosine similarity as logits
|
367 |
+
logit_scale = self.logit_scale.exp()
|
368 |
+
logits_per_image = logit_scale * image_features @ text_features.t()
|
369 |
+
logits_per_text = logits_per_image.t()
|
370 |
+
|
371 |
+
# shape = [global_batch_size, global_batch_size]
|
372 |
+
return logits_per_image, logits_per_text
|
373 |
+
|
374 |
+
|
375 |
+
def convert_weights(model: nn.Module):
|
376 |
+
"""Convert applicable model parameters to fp16"""
|
377 |
+
|
378 |
+
def _convert_weights_to_fp16(l):
|
379 |
+
if isinstance(l, (nn.Conv1d, nn.Conv2d, nn.Linear)):
|
380 |
+
l.weight.data = l.weight.data.half()
|
381 |
+
if l.bias is not None:
|
382 |
+
l.bias.data = l.bias.data.half()
|
383 |
+
|
384 |
+
if isinstance(l, nn.MultiheadAttention):
|
385 |
+
for attr in [*[f"{s}_proj_weight" for s in ["in", "q", "k", "v"]], "in_proj_bias", "bias_k", "bias_v"]:
|
386 |
+
tensor = getattr(l, attr)
|
387 |
+
if tensor is not None:
|
388 |
+
tensor.data = tensor.data.half()
|
389 |
+
|
390 |
+
for name in ["text_projection", "proj"]:
|
391 |
+
if hasattr(l, name):
|
392 |
+
attr = getattr(l, name)
|
393 |
+
if attr is not None:
|
394 |
+
attr.data = attr.data.half()
|
395 |
+
|
396 |
+
model.apply(_convert_weights_to_fp16)
|
397 |
+
|
398 |
+
|
399 |
+
def build_model(state_dict: dict):
|
400 |
+
vit = "visual.proj" in state_dict
|
401 |
+
|
402 |
+
if vit:
|
403 |
+
vision_width = state_dict["visual.conv1.weight"].shape[0]
|
404 |
+
vision_layers = len([k for k in state_dict.keys() if k.startswith("visual.") and k.endswith(".attn.in_proj_weight")])
|
405 |
+
vision_patch_size = state_dict["visual.conv1.weight"].shape[-1]
|
406 |
+
grid_size = round((state_dict["visual.positional_embedding"].shape[0] - 1) ** 0.5)
|
407 |
+
image_resolution = vision_patch_size * grid_size
|
408 |
+
else:
|
409 |
+
counts: list = [len(set(k.split(".")[2] for k in state_dict if k.startswith(f"visual.layer{b}"))) for b in [1, 2, 3, 4]]
|
410 |
+
vision_layers = tuple(counts)
|
411 |
+
vision_width = state_dict["visual.layer1.0.conv1.weight"].shape[0]
|
412 |
+
output_width = round((state_dict["visual.attnpool.positional_embedding"].shape[0] - 1) ** 0.5)
|
413 |
+
vision_patch_size = None
|
414 |
+
assert output_width ** 2 + 1 == state_dict["visual.attnpool.positional_embedding"].shape[0]
|
415 |
+
image_resolution = output_width * 32
|
416 |
+
|
417 |
+
embed_dim = state_dict["text_projection"].shape[1]
|
418 |
+
context_length = state_dict["positional_embedding"].shape[0]
|
419 |
+
vocab_size = state_dict["token_embedding.weight"].shape[0]
|
420 |
+
transformer_width = state_dict["ln_final.weight"].shape[0]
|
421 |
+
transformer_heads = transformer_width // 64
|
422 |
+
transformer_layers = len(set(k.split(".")[2] for k in state_dict if k.startswith("transformer.resblocks")))
|
423 |
+
|
424 |
+
model = CLIP(
|
425 |
+
embed_dim,
|
426 |
+
image_resolution, vision_layers, vision_width, vision_patch_size,
|
427 |
+
context_length, vocab_size, transformer_width, transformer_heads, transformer_layers
|
428 |
+
)
|
429 |
+
|
430 |
+
for key in ["input_resolution", "context_length", "vocab_size"]:
|
431 |
+
if key in state_dict:
|
432 |
+
del state_dict[key]
|
433 |
+
|
434 |
+
convert_weights(model)
|
435 |
+
model.load_state_dict(state_dict)
|
436 |
+
return model.eval()
|
clip/simple_tokenizer.py
ADDED
@@ -0,0 +1,132 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gzip
|
2 |
+
import html
|
3 |
+
import os
|
4 |
+
from functools import lru_cache
|
5 |
+
|
6 |
+
import ftfy
|
7 |
+
import regex as re
|
8 |
+
|
9 |
+
|
10 |
+
@lru_cache()
|
11 |
+
def default_bpe():
|
12 |
+
return os.path.join(os.path.dirname(os.path.abspath(__file__)), "bpe_simple_vocab_16e6.txt.gz")
|
13 |
+
|
14 |
+
|
15 |
+
@lru_cache()
|
16 |
+
def bytes_to_unicode():
|
17 |
+
"""
|
18 |
+
Returns list of utf-8 byte and a corresponding list of unicode strings.
|
19 |
+
The reversible bpe codes work on unicode strings.
|
20 |
+
This means you need a large # of unicode characters in your vocab if you want to avoid UNKs.
|
21 |
+
When you're at something like a 10B token dataset you end up needing around 5K for decent coverage.
|
22 |
+
This is a signficant percentage of your normal, say, 32K bpe vocab.
|
23 |
+
To avoid that, we want lookup tables between utf-8 bytes and unicode strings.
|
24 |
+
And avoids mapping to whitespace/control characters the bpe code barfs on.
|
25 |
+
"""
|
26 |
+
bs = list(range(ord("!"), ord("~")+1))+list(range(ord("¡"), ord("¬")+1))+list(range(ord("®"), ord("ÿ")+1))
|
27 |
+
cs = bs[:]
|
28 |
+
n = 0
|
29 |
+
for b in range(2**8):
|
30 |
+
if b not in bs:
|
31 |
+
bs.append(b)
|
32 |
+
cs.append(2**8+n)
|
33 |
+
n += 1
|
34 |
+
cs = [chr(n) for n in cs]
|
35 |
+
return dict(zip(bs, cs))
|
36 |
+
|
37 |
+
|
38 |
+
def get_pairs(word):
|
39 |
+
"""Return set of symbol pairs in a word.
|
40 |
+
Word is represented as tuple of symbols (symbols being variable-length strings).
|
41 |
+
"""
|
42 |
+
pairs = set()
|
43 |
+
prev_char = word[0]
|
44 |
+
for char in word[1:]:
|
45 |
+
pairs.add((prev_char, char))
|
46 |
+
prev_char = char
|
47 |
+
return pairs
|
48 |
+
|
49 |
+
|
50 |
+
def basic_clean(text):
|
51 |
+
text = ftfy.fix_text(text)
|
52 |
+
text = html.unescape(html.unescape(text))
|
53 |
+
return text.strip()
|
54 |
+
|
55 |
+
|
56 |
+
def whitespace_clean(text):
|
57 |
+
text = re.sub(r'\s+', ' ', text)
|
58 |
+
text = text.strip()
|
59 |
+
return text
|
60 |
+
|
61 |
+
|
62 |
+
class SimpleTokenizer(object):
|
63 |
+
def __init__(self, bpe_path: str = default_bpe()):
|
64 |
+
self.byte_encoder = bytes_to_unicode()
|
65 |
+
self.byte_decoder = {v: k for k, v in self.byte_encoder.items()}
|
66 |
+
merges = gzip.open(bpe_path).read().decode("utf-8").split('\n')
|
67 |
+
merges = merges[1:49152-256-2+1]
|
68 |
+
merges = [tuple(merge.split()) for merge in merges]
|
69 |
+
vocab = list(bytes_to_unicode().values())
|
70 |
+
vocab = vocab + [v+'</w>' for v in vocab]
|
71 |
+
for merge in merges:
|
72 |
+
vocab.append(''.join(merge))
|
73 |
+
vocab.extend(['<|startoftext|>', '<|endoftext|>'])
|
74 |
+
self.encoder = dict(zip(vocab, range(len(vocab))))
|
75 |
+
self.decoder = {v: k for k, v in self.encoder.items()}
|
76 |
+
self.bpe_ranks = dict(zip(merges, range(len(merges))))
|
77 |
+
self.cache = {'<|startoftext|>': '<|startoftext|>', '<|endoftext|>': '<|endoftext|>'}
|
78 |
+
self.pat = re.compile(r"""<\|startoftext\|>|<\|endoftext\|>|'s|'t|'re|'ve|'m|'ll|'d|[\p{L}]+|[\p{N}]|[^\s\p{L}\p{N}]+""", re.IGNORECASE)
|
79 |
+
|
80 |
+
def bpe(self, token):
|
81 |
+
if token in self.cache:
|
82 |
+
return self.cache[token]
|
83 |
+
word = tuple(token[:-1]) + ( token[-1] + '</w>',)
|
84 |
+
pairs = get_pairs(word)
|
85 |
+
|
86 |
+
if not pairs:
|
87 |
+
return token+'</w>'
|
88 |
+
|
89 |
+
while True:
|
90 |
+
bigram = min(pairs, key = lambda pair: self.bpe_ranks.get(pair, float('inf')))
|
91 |
+
if bigram not in self.bpe_ranks:
|
92 |
+
break
|
93 |
+
first, second = bigram
|
94 |
+
new_word = []
|
95 |
+
i = 0
|
96 |
+
while i < len(word):
|
97 |
+
try:
|
98 |
+
j = word.index(first, i)
|
99 |
+
new_word.extend(word[i:j])
|
100 |
+
i = j
|
101 |
+
except:
|
102 |
+
new_word.extend(word[i:])
|
103 |
+
break
|
104 |
+
|
105 |
+
if word[i] == first and i < len(word)-1 and word[i+1] == second:
|
106 |
+
new_word.append(first+second)
|
107 |
+
i += 2
|
108 |
+
else:
|
109 |
+
new_word.append(word[i])
|
110 |
+
i += 1
|
111 |
+
new_word = tuple(new_word)
|
112 |
+
word = new_word
|
113 |
+
if len(word) == 1:
|
114 |
+
break
|
115 |
+
else:
|
116 |
+
pairs = get_pairs(word)
|
117 |
+
word = ' '.join(word)
|
118 |
+
self.cache[token] = word
|
119 |
+
return word
|
120 |
+
|
121 |
+
def encode(self, text):
|
122 |
+
bpe_tokens = []
|
123 |
+
text = whitespace_clean(basic_clean(text)).lower()
|
124 |
+
for token in re.findall(self.pat, text):
|
125 |
+
token = ''.join(self.byte_encoder[b] for b in token.encode('utf-8'))
|
126 |
+
bpe_tokens.extend(self.encoder[bpe_token] for bpe_token in self.bpe(token).split(' '))
|
127 |
+
return bpe_tokens
|
128 |
+
|
129 |
+
def decode(self, tokens):
|
130 |
+
text = ''.join([self.decoder[token] for token in tokens])
|
131 |
+
text = bytearray([self.byte_decoder[c] for c in text]).decode('utf-8', errors="replace").replace('</w>', ' ')
|
132 |
+
return text
|
clip/vitseg.py
ADDED
@@ -0,0 +1,286 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
from posixpath import basename, dirname, join
|
3 |
+
# import clip
|
4 |
+
from clip.model import convert_weights
|
5 |
+
import torch
|
6 |
+
import json
|
7 |
+
from torch import nn
|
8 |
+
from torch.nn import functional as nnf
|
9 |
+
from torch.nn.modules import activation
|
10 |
+
from torch.nn.modules.activation import ReLU
|
11 |
+
from torchvision import transforms
|
12 |
+
|
13 |
+
normalize = transforms.Normalize(mean=(0.48145466, 0.4578275, 0.40821073), std=(0.26862954, 0.26130258, 0.27577711))
|
14 |
+
|
15 |
+
from torchvision.models import ResNet
|
16 |
+
|
17 |
+
|
18 |
+
def process_prompts(conditional, prompt_list, conditional_map):
|
19 |
+
# DEPRECATED
|
20 |
+
|
21 |
+
# randomly sample a synonym
|
22 |
+
words = [conditional_map[int(i)] for i in conditional]
|
23 |
+
words = [syns[torch.multinomial(torch.ones(len(syns)), 1, replacement=True).item()] for syns in words]
|
24 |
+
words = [w.replace('_', ' ') for w in words]
|
25 |
+
|
26 |
+
if prompt_list is not None:
|
27 |
+
prompt_indices = torch.multinomial(torch.ones(len(prompt_list)), len(words), replacement=True)
|
28 |
+
prompts = [prompt_list[i] for i in prompt_indices]
|
29 |
+
else:
|
30 |
+
prompts = ['a photo of {}'] * (len(words))
|
31 |
+
|
32 |
+
return [promt.format(w) for promt, w in zip(prompts, words)]
|
33 |
+
|
34 |
+
|
35 |
+
class VITDenseBase(nn.Module):
|
36 |
+
|
37 |
+
def rescaled_pos_emb(self, new_size):
|
38 |
+
assert len(new_size) == 2
|
39 |
+
|
40 |
+
a = self.model.positional_embedding[1:].T.view(1, 768, *self.token_shape)
|
41 |
+
b = nnf.interpolate(a, new_size, mode='bicubic', align_corners=False).squeeze(0).view(768, new_size[0]*new_size[1]).T
|
42 |
+
return torch.cat([self.model.positional_embedding[:1], b])
|
43 |
+
|
44 |
+
def visual_forward(self, x_inp, extract_layers=(), skip=False, mask=None):
|
45 |
+
|
46 |
+
with torch.no_grad():
|
47 |
+
|
48 |
+
x_inp = nnf.interpolate(x_inp, (384, 384))
|
49 |
+
|
50 |
+
x = self.model.patch_embed(x_inp)
|
51 |
+
cls_token = self.model.cls_token.expand(x.shape[0], -1, -1) # stole cls_tokens impl from Phil Wang, thanks
|
52 |
+
if self.model.dist_token is None:
|
53 |
+
x = torch.cat((cls_token, x), dim=1)
|
54 |
+
else:
|
55 |
+
x = torch.cat((cls_token, self.model.dist_token.expand(x.shape[0], -1, -1), x), dim=1)
|
56 |
+
x = self.model.pos_drop(x + self.model.pos_embed)
|
57 |
+
|
58 |
+
activations = []
|
59 |
+
for i, block in enumerate(self.model.blocks):
|
60 |
+
x = block(x)
|
61 |
+
|
62 |
+
if i in extract_layers:
|
63 |
+
# permute to be compatible with CLIP
|
64 |
+
activations += [x.permute(1,0,2)]
|
65 |
+
|
66 |
+
x = self.model.norm(x)
|
67 |
+
x = self.model.head(self.model.pre_logits(x[:, 0]))
|
68 |
+
|
69 |
+
# again for CLIP compatibility
|
70 |
+
# x = x.permute(1, 0, 2)
|
71 |
+
|
72 |
+
return x, activations, None
|
73 |
+
|
74 |
+
def sample_prompts(self, words, prompt_list=None):
|
75 |
+
|
76 |
+
prompt_list = prompt_list if prompt_list is not None else self.prompt_list
|
77 |
+
|
78 |
+
prompt_indices = torch.multinomial(torch.ones(len(prompt_list)), len(words), replacement=True)
|
79 |
+
prompts = [prompt_list[i] for i in prompt_indices]
|
80 |
+
return [promt.format(w) for promt, w in zip(prompts, words)]
|
81 |
+
|
82 |
+
def get_cond_vec(self, conditional, batch_size):
|
83 |
+
# compute conditional from a single string
|
84 |
+
if conditional is not None and type(conditional) == str:
|
85 |
+
cond = self.compute_conditional(conditional)
|
86 |
+
cond = cond.repeat(batch_size, 1)
|
87 |
+
|
88 |
+
# compute conditional from string list/tuple
|
89 |
+
elif conditional is not None and type(conditional) in {list, tuple} and type(conditional[0]) == str:
|
90 |
+
assert len(conditional) == batch_size
|
91 |
+
cond = self.compute_conditional(conditional)
|
92 |
+
|
93 |
+
# use conditional directly
|
94 |
+
elif conditional is not None and type(conditional) == torch.Tensor and conditional.ndim == 2:
|
95 |
+
cond = conditional
|
96 |
+
|
97 |
+
# compute conditional from image
|
98 |
+
elif conditional is not None and type(conditional) == torch.Tensor:
|
99 |
+
with torch.no_grad():
|
100 |
+
cond, _, _ = self.visual_forward(conditional)
|
101 |
+
else:
|
102 |
+
raise ValueError('invalid conditional')
|
103 |
+
return cond
|
104 |
+
|
105 |
+
def compute_conditional(self, conditional):
|
106 |
+
import clip
|
107 |
+
|
108 |
+
dev = next(self.parameters()).device
|
109 |
+
|
110 |
+
if type(conditional) in {list, tuple}:
|
111 |
+
text_tokens = clip.tokenize(conditional).to(dev)
|
112 |
+
cond = self.clip_model.encode_text(text_tokens)
|
113 |
+
else:
|
114 |
+
if conditional in self.precomputed_prompts:
|
115 |
+
cond = self.precomputed_prompts[conditional].float().to(dev)
|
116 |
+
else:
|
117 |
+
text_tokens = clip.tokenize([conditional]).to(dev)
|
118 |
+
cond = self.clip_model.encode_text(text_tokens)[0]
|
119 |
+
|
120 |
+
return cond
|
121 |
+
|
122 |
+
|
123 |
+
class VITDensePredT(VITDenseBase):
|
124 |
+
|
125 |
+
def __init__(self, extract_layers=(3, 6, 9), cond_layer=0, reduce_dim=128, n_heads=4, prompt='fixed',
|
126 |
+
depth=3, extra_blocks=0, reduce_cond=None, fix_shift=False,
|
127 |
+
learn_trans_conv_only=False, refine=None, limit_to_clip_only=False, upsample=False,
|
128 |
+
add_calibration=False, process_cond=None, not_pretrained=False):
|
129 |
+
super().__init__()
|
130 |
+
# device = 'cpu'
|
131 |
+
|
132 |
+
self.extract_layers = extract_layers
|
133 |
+
self.cond_layer = cond_layer
|
134 |
+
self.limit_to_clip_only = limit_to_clip_only
|
135 |
+
self.process_cond = None
|
136 |
+
|
137 |
+
if add_calibration:
|
138 |
+
self.calibration_conds = 1
|
139 |
+
|
140 |
+
self.upsample_proj = nn.Conv2d(reduce_dim, 1, kernel_size=1) if upsample else None
|
141 |
+
|
142 |
+
self.add_activation1 = True
|
143 |
+
|
144 |
+
import timm
|
145 |
+
self.model = timm.create_model('vit_base_patch16_384', pretrained=True)
|
146 |
+
self.model.head = nn.Linear(768, 512 if reduce_cond is None else reduce_cond)
|
147 |
+
|
148 |
+
for p in self.model.parameters():
|
149 |
+
p.requires_grad_(False)
|
150 |
+
|
151 |
+
import clip
|
152 |
+
self.clip_model, _ = clip.load('ViT-B/16', device='cpu', jit=False)
|
153 |
+
# del self.clip_model.visual
|
154 |
+
|
155 |
+
|
156 |
+
self.token_shape = (14, 14)
|
157 |
+
|
158 |
+
# conditional
|
159 |
+
if reduce_cond is not None:
|
160 |
+
self.reduce_cond = nn.Linear(512, reduce_cond)
|
161 |
+
for p in self.reduce_cond.parameters():
|
162 |
+
p.requires_grad_(False)
|
163 |
+
else:
|
164 |
+
self.reduce_cond = None
|
165 |
+
|
166 |
+
# self.film = AVAILABLE_BLOCKS['film'](512, 128)
|
167 |
+
self.film_mul = nn.Linear(512 if reduce_cond is None else reduce_cond, reduce_dim)
|
168 |
+
self.film_add = nn.Linear(512 if reduce_cond is None else reduce_cond, reduce_dim)
|
169 |
+
|
170 |
+
# DEPRECATED
|
171 |
+
# self.conditional_map = {c['id']: c['synonyms'] for c in json.load(open(cond_map))}
|
172 |
+
|
173 |
+
assert len(self.extract_layers) == depth
|
174 |
+
|
175 |
+
self.reduces = nn.ModuleList([nn.Linear(768, reduce_dim) for _ in range(depth)])
|
176 |
+
self.blocks = nn.ModuleList([nn.TransformerEncoderLayer(d_model=reduce_dim, nhead=n_heads) for _ in range(len(self.extract_layers))])
|
177 |
+
self.extra_blocks = nn.ModuleList([nn.TransformerEncoderLayer(d_model=reduce_dim, nhead=n_heads) for _ in range(extra_blocks)])
|
178 |
+
|
179 |
+
trans_conv_ks = (16, 16)
|
180 |
+
self.trans_conv = nn.ConvTranspose2d(reduce_dim, 1, trans_conv_ks, stride=trans_conv_ks)
|
181 |
+
|
182 |
+
# refinement and trans conv
|
183 |
+
|
184 |
+
if learn_trans_conv_only:
|
185 |
+
for p in self.parameters():
|
186 |
+
p.requires_grad_(False)
|
187 |
+
|
188 |
+
for p in self.trans_conv.parameters():
|
189 |
+
p.requires_grad_(True)
|
190 |
+
|
191 |
+
if prompt == 'fixed':
|
192 |
+
self.prompt_list = ['a photo of a {}.']
|
193 |
+
elif prompt == 'shuffle':
|
194 |
+
self.prompt_list = ['a photo of a {}.', 'a photograph of a {}.', 'an image of a {}.', '{}.']
|
195 |
+
elif prompt == 'shuffle+':
|
196 |
+
self.prompt_list = ['a photo of a {}.', 'a photograph of a {}.', 'an image of a {}.', '{}.',
|
197 |
+
'a cropped photo of a {}.', 'a good photo of a {}.', 'a photo of one {}.',
|
198 |
+
'a bad photo of a {}.', 'a photo of the {}.']
|
199 |
+
elif prompt == 'shuffle_clip':
|
200 |
+
from models.clip_prompts import imagenet_templates
|
201 |
+
self.prompt_list = imagenet_templates
|
202 |
+
|
203 |
+
if process_cond is not None:
|
204 |
+
if process_cond == 'clamp' or process_cond[0] == 'clamp':
|
205 |
+
|
206 |
+
val = process_cond[1] if type(process_cond) in {list, tuple} else 0.2
|
207 |
+
|
208 |
+
def clamp_vec(x):
|
209 |
+
return torch.clamp(x, -val, val)
|
210 |
+
|
211 |
+
self.process_cond = clamp_vec
|
212 |
+
|
213 |
+
elif process_cond.endswith('.pth'):
|
214 |
+
|
215 |
+
shift = torch.load(process_cond)
|
216 |
+
def add_shift(x):
|
217 |
+
return x + shift.to(x.device)
|
218 |
+
|
219 |
+
self.process_cond = add_shift
|
220 |
+
|
221 |
+
import pickle
|
222 |
+
precomp = pickle.load(open('precomputed_prompt_vectors.pickle', 'rb'))
|
223 |
+
self.precomputed_prompts = {k: torch.from_numpy(v) for k, v in precomp.items()}
|
224 |
+
|
225 |
+
|
226 |
+
def forward(self, inp_image, conditional=None, return_features=False, mask=None):
|
227 |
+
|
228 |
+
assert type(return_features) == bool
|
229 |
+
|
230 |
+
# inp_image = inp_image.to(self.model.positional_embedding.device)
|
231 |
+
|
232 |
+
if mask is not None:
|
233 |
+
raise ValueError('mask not supported')
|
234 |
+
|
235 |
+
# x_inp = normalize(inp_image)
|
236 |
+
x_inp = inp_image
|
237 |
+
|
238 |
+
bs, dev = inp_image.shape[0], x_inp.device
|
239 |
+
|
240 |
+
inp_image_size = inp_image.shape[2:]
|
241 |
+
|
242 |
+
cond = self.get_cond_vec(conditional, bs)
|
243 |
+
|
244 |
+
visual_q, activations, _ = self.visual_forward(x_inp, extract_layers=[0] + list(self.extract_layers))
|
245 |
+
|
246 |
+
activation1 = activations[0]
|
247 |
+
activations = activations[1:]
|
248 |
+
|
249 |
+
a = None
|
250 |
+
for i, (activation, block, reduce) in enumerate(zip(activations[::-1], self.blocks, self.reduces)):
|
251 |
+
|
252 |
+
if a is not None:
|
253 |
+
a = reduce(activation) + a
|
254 |
+
else:
|
255 |
+
a = reduce(activation)
|
256 |
+
|
257 |
+
if i == self.cond_layer:
|
258 |
+
if self.reduce_cond is not None:
|
259 |
+
cond = self.reduce_cond(cond)
|
260 |
+
|
261 |
+
a = self.film_mul(cond) * a + self.film_add(cond)
|
262 |
+
|
263 |
+
a = block(a)
|
264 |
+
|
265 |
+
for block in self.extra_blocks:
|
266 |
+
a = a + block(a)
|
267 |
+
|
268 |
+
a = a[1:].permute(1, 2, 0) # rm cls token and -> BS, Feats, Tokens
|
269 |
+
|
270 |
+
size = int(math.sqrt(a.shape[2]))
|
271 |
+
|
272 |
+
a = a.view(bs, a.shape[1], size, size)
|
273 |
+
|
274 |
+
if self.trans_conv is not None:
|
275 |
+
a = self.trans_conv(a)
|
276 |
+
|
277 |
+
if self.upsample_proj is not None:
|
278 |
+
a = self.upsample_proj(a)
|
279 |
+
a = nnf.interpolate(a, x_inp.shape[2:], mode='bilinear')
|
280 |
+
|
281 |
+
a = nnf.interpolate(a, inp_image_size)
|
282 |
+
|
283 |
+
if return_features:
|
284 |
+
return a, visual_q, cond, [activation1] + activations
|
285 |
+
else:
|
286 |
+
return a,
|
ui/globals.py
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
ui_restart_server = False
|
2 |
+
|
3 |
+
SELECTION_FACES_DATA = None
|
4 |
+
ui_SELECTED_INPUT_FACE_INDEX = 0
|
5 |
+
|
6 |
+
ui_selected_enhancer = None
|
7 |
+
ui_upscale = None
|
8 |
+
ui_blend_ratio = None
|
9 |
+
ui_input_thumbs = []
|
10 |
+
ui_target_thumbs = []
|
11 |
+
ui_camera_frame = None
|
12 |
+
|
13 |
+
|
14 |
+
|
15 |
+
|
16 |
+
|
ui/main.py
ADDED
@@ -0,0 +1,96 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import time
|
3 |
+
import gradio as gr
|
4 |
+
import roop.globals
|
5 |
+
import roop.metadata
|
6 |
+
import roop.utilities as util
|
7 |
+
import ui.globals as uii
|
8 |
+
|
9 |
+
from ui.tabs.faceswap_tab import faceswap_tab
|
10 |
+
from ui.tabs.livecam_tab import livecam_tab
|
11 |
+
from ui.tabs.facemgr_tab import facemgr_tab
|
12 |
+
from ui.tabs.extras_tab import extras_tab
|
13 |
+
from ui.tabs.settings_tab import settings_tab
|
14 |
+
|
15 |
+
roop.globals.keep_fps = None
|
16 |
+
roop.globals.keep_frames = None
|
17 |
+
roop.globals.skip_audio = None
|
18 |
+
roop.globals.use_batch = None
|
19 |
+
|
20 |
+
|
21 |
+
def prepare_environment():
|
22 |
+
roop.globals.output_path = os.path.abspath(os.path.join(os.getcwd(), "output"))
|
23 |
+
os.makedirs(roop.globals.output_path, exist_ok=True)
|
24 |
+
if not roop.globals.CFG.use_os_temp_folder:
|
25 |
+
os.environ["TEMP"] = os.environ["TMP"] = os.path.abspath(os.path.join(os.getcwd(), "temp"))
|
26 |
+
os.makedirs(os.environ["TEMP"], exist_ok=True)
|
27 |
+
os.environ["GRADIO_TEMP_DIR"] = os.environ["TEMP"]
|
28 |
+
os.environ['GRADIO_ANALYTICS_ENABLED'] = '0'
|
29 |
+
|
30 |
+
def run():
|
31 |
+
from roop.core import decode_execution_providers, set_display_ui
|
32 |
+
|
33 |
+
prepare_environment()
|
34 |
+
|
35 |
+
set_display_ui(show_msg)
|
36 |
+
if roop.globals.CFG.provider == "cuda" and util.has_cuda_device() == False:
|
37 |
+
roop.globals.CFG.provider = "cpu"
|
38 |
+
|
39 |
+
roop.globals.execution_providers = decode_execution_providers([roop.globals.CFG.provider])
|
40 |
+
gputype = util.get_device()
|
41 |
+
if gputype == 'cuda':
|
42 |
+
util.print_cuda_info()
|
43 |
+
|
44 |
+
print(f'Using provider {roop.globals.execution_providers} - Device:{gputype}')
|
45 |
+
|
46 |
+
run_server = True
|
47 |
+
uii.ui_restart_server = False
|
48 |
+
mycss = """
|
49 |
+
span {color: var(--block-info-text-color)}
|
50 |
+
#fixedheight {
|
51 |
+
max-height: 238.4px;
|
52 |
+
overflow-y: auto !important;
|
53 |
+
}
|
54 |
+
.image-container.svelte-1l6wqyv {height: 100%}
|
55 |
+
|
56 |
+
"""
|
57 |
+
|
58 |
+
while run_server:
|
59 |
+
server_name = roop.globals.CFG.server_name
|
60 |
+
if server_name is None or len(server_name) < 1:
|
61 |
+
server_name = None
|
62 |
+
server_port = roop.globals.CFG.server_port
|
63 |
+
if server_port <= 0:
|
64 |
+
server_port = None
|
65 |
+
ssl_verify = False if server_name == '0.0.0.0' else True
|
66 |
+
with gr.Blocks(title=f'{roop.metadata.name} {roop.metadata.version}', theme=roop.globals.CFG.selected_theme, css=mycss, delete_cache=(60, 86400)) as ui:
|
67 |
+
with gr.Row(variant='compact'):
|
68 |
+
gr.Markdown(f"### [{roop.metadata.name} {roop.metadata.version}](https://github.com/C0untFloyd/roop-unleashed)")
|
69 |
+
gr.HTML(util.create_version_html(), elem_id="versions")
|
70 |
+
faceswap_tab()
|
71 |
+
livecam_tab()
|
72 |
+
facemgr_tab()
|
73 |
+
extras_tab()
|
74 |
+
settings_tab()
|
75 |
+
launch_browser = roop.globals.CFG.launch_browser
|
76 |
+
|
77 |
+
uii.ui_restart_server = False
|
78 |
+
try:
|
79 |
+
ui.queue().launch(inbrowser=launch_browser, server_name=server_name, server_port=server_port, share=roop.globals.CFG.server_share, ssl_verify=ssl_verify, prevent_thread_lock=True, show_error=True)
|
80 |
+
except Exception as e:
|
81 |
+
print(f'Exception {e} when launching Gradio Server!')
|
82 |
+
uii.ui_restart_server = True
|
83 |
+
run_server = False
|
84 |
+
try:
|
85 |
+
while uii.ui_restart_server == False:
|
86 |
+
time.sleep(1.0)
|
87 |
+
|
88 |
+
except (KeyboardInterrupt, OSError):
|
89 |
+
print("Keyboard interruption in main thread... closing server.")
|
90 |
+
run_server = False
|
91 |
+
ui.close()
|
92 |
+
|
93 |
+
|
94 |
+
def show_msg(msg: str):
|
95 |
+
gr.Info(msg)
|
96 |
+
|
ui/tabs/extras_tab.py
ADDED
@@ -0,0 +1,245 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import gradio as gr
|
3 |
+
import shutil
|
4 |
+
import roop.utilities as util
|
5 |
+
import roop.util_ffmpeg as ffmpeg
|
6 |
+
import roop.globals
|
7 |
+
from roop.utilities import clean_dir
|
8 |
+
|
9 |
+
frame_filters_map = {
|
10 |
+
"Colorize B/W Images (Deoldify Artistic)" : {"colorizer" : {"subtype": "deoldify_artistic"}},
|
11 |
+
"Colorize B/W Images (Deoldify Stable)" : {"colorizer" : {"subtype": "deoldify_stable"}},
|
12 |
+
"Background remove" : {"removebg" : {"subtype": ""}},
|
13 |
+
"Filter Stylize" : {"filter_generic" : {"subtype" : "stylize" }},
|
14 |
+
"Filter Detail Enhance" : {"filter_generic" : {"subtype" : "detailenhance" }},
|
15 |
+
"Filter Pencil Sketch" : {"filter_generic" : {"subtype" : "pencil" }},
|
16 |
+
"Filter Cartoon" : {"filter_generic" : {"subtype" : "cartoon" }},
|
17 |
+
"Filter C64" : {"filter_generic" : {"subtype" : "C64" }}
|
18 |
+
}
|
19 |
+
|
20 |
+
frame_upscalers_map = {
|
21 |
+
"ESRGAN x2" : {"upscale" : {"subtype": "esrganx2"}},
|
22 |
+
"ESRGAN x4" : {"upscale" : {"subtype": "esrganx4"}},
|
23 |
+
"LSDIR x4" : {"upscale" : {"subtype": "lsdirx4"}}
|
24 |
+
}
|
25 |
+
|
26 |
+
def extras_tab():
|
27 |
+
filternames = ["None"]
|
28 |
+
for f in frame_filters_map.keys():
|
29 |
+
filternames.append(f)
|
30 |
+
upscalernames = ["None"]
|
31 |
+
for f in frame_upscalers_map.keys():
|
32 |
+
upscalernames.append(f)
|
33 |
+
|
34 |
+
with gr.Tab("🎉 Extras"):
|
35 |
+
with gr.Row():
|
36 |
+
files_to_process = gr.Files(label='File(s) to process', file_count="multiple", file_types=["image", "video"])
|
37 |
+
with gr.Row(variant='panel'):
|
38 |
+
with gr.Accordion(label="Video/GIF", open=False):
|
39 |
+
with gr.Row(variant='panel'):
|
40 |
+
with gr.Column():
|
41 |
+
gr.Markdown("""
|
42 |
+
# Poor man's video editor
|
43 |
+
Re-encoding uses your configuration from the Settings Tab.
|
44 |
+
""")
|
45 |
+
with gr.Column():
|
46 |
+
cut_start_time = gr.Slider(0, 1000000, value=0, label="Start Frame", step=1.0, interactive=True)
|
47 |
+
with gr.Column():
|
48 |
+
cut_end_time = gr.Slider(1, 1000000, value=1, label="End Frame", step=1.0, interactive=True)
|
49 |
+
with gr.Column():
|
50 |
+
extras_chk_encode = gr.Checkbox(label='Re-encode videos (necessary for videos with different codecs)', value=False)
|
51 |
+
start_cut_video = gr.Button("Cut video")
|
52 |
+
start_extract_frames = gr.Button("Extract frames")
|
53 |
+
start_join_videos = gr.Button("Join videos")
|
54 |
+
|
55 |
+
with gr.Row(variant='panel'):
|
56 |
+
with gr.Column():
|
57 |
+
gr.Markdown("""
|
58 |
+
# Create video/gif from images
|
59 |
+
""")
|
60 |
+
with gr.Column():
|
61 |
+
extras_fps = gr.Slider(minimum=0, maximum=120, value=30, label="Video FPS", step=1.0, interactive=True)
|
62 |
+
extras_images_folder = gr.Textbox(show_label=False, placeholder="/content/", interactive=True)
|
63 |
+
with gr.Column():
|
64 |
+
extras_chk_creategif = gr.Checkbox(label='Create GIF from video', value=False)
|
65 |
+
extras_create_video=gr.Button("Create")
|
66 |
+
with gr.Row(variant='panel'):
|
67 |
+
with gr.Column():
|
68 |
+
gr.Markdown("""
|
69 |
+
# Create video from gif
|
70 |
+
""")
|
71 |
+
with gr.Column():
|
72 |
+
extras_video_fps = gr.Slider(minimum=0, maximum=120, value=0, label="Video FPS", step=1.0, interactive=True)
|
73 |
+
with gr.Column():
|
74 |
+
extras_create_video_from_gif=gr.Button("Create")
|
75 |
+
with gr.Row(variant='panel'):
|
76 |
+
with gr.Column(scale=2):
|
77 |
+
gr.Markdown("""
|
78 |
+
# Repair video
|
79 |
+
|
80 |
+
Uses FFMpeg to fix corrupt videos.
|
81 |
+
""")
|
82 |
+
with gr.Column():
|
83 |
+
extras_repair_video=gr.Button("Repair")
|
84 |
+
|
85 |
+
|
86 |
+
with gr.Row(variant='panel'):
|
87 |
+
with gr.Accordion(label="Full frame processing", open=True):
|
88 |
+
with gr.Row(variant='panel'):
|
89 |
+
filterselection = gr.Dropdown(filternames, value="None", label="Colorizer/FilterFX", interactive=True)
|
90 |
+
upscalerselection = gr.Dropdown(upscalernames, value="None", label="Enhancer", interactive=True)
|
91 |
+
with gr.Row(variant='panel'):
|
92 |
+
start_frame_process=gr.Button("Start processing")
|
93 |
+
|
94 |
+
with gr.Row():
|
95 |
+
gr.Button("👀 Open Output Folder", size='sm').click(fn=lambda: util.open_folder(roop.globals.output_path))
|
96 |
+
with gr.Row():
|
97 |
+
extra_files_output = gr.Files(label='Resulting output files', file_count="multiple")
|
98 |
+
|
99 |
+
start_cut_video.click(fn=on_cut_video, inputs=[files_to_process, cut_start_time, cut_end_time, extras_chk_encode], outputs=[extra_files_output])
|
100 |
+
start_extract_frames.click(fn=on_extras_extract_frames, inputs=[files_to_process], outputs=[extra_files_output])
|
101 |
+
start_join_videos.click(fn=on_join_videos, inputs=[files_to_process, extras_chk_encode], outputs=[extra_files_output])
|
102 |
+
extras_create_video.click(fn=on_extras_create_video, inputs=[files_to_process, extras_images_folder, extras_fps, extras_chk_creategif], outputs=[extra_files_output])
|
103 |
+
extras_create_video_from_gif.click(fn=on_extras_create_video_from_gif, inputs=[files_to_process, extras_video_fps], outputs=[extra_files_output])
|
104 |
+
extras_repair_video.click(fn=on_extras_repair_video, inputs=[files_to_process], outputs=[extra_files_output])
|
105 |
+
start_frame_process.click(fn=on_frame_process, inputs=[files_to_process, filterselection, upscalerselection], outputs=[extra_files_output])
|
106 |
+
|
107 |
+
|
108 |
+
def on_cut_video(files, cut_start_frame, cut_end_frame, reencode):
|
109 |
+
if files is None:
|
110 |
+
return None
|
111 |
+
|
112 |
+
resultfiles = []
|
113 |
+
for tf in files:
|
114 |
+
f = tf.name
|
115 |
+
destfile = util.get_destfilename_from_path(f, roop.globals.output_path, '_cut')
|
116 |
+
ffmpeg.cut_video(f, destfile, cut_start_frame, cut_end_frame, reencode)
|
117 |
+
if os.path.isfile(destfile):
|
118 |
+
resultfiles.append(destfile)
|
119 |
+
else:
|
120 |
+
gr.Error('Cutting video failed!')
|
121 |
+
return resultfiles
|
122 |
+
|
123 |
+
|
124 |
+
def on_join_videos(files, chk_encode):
|
125 |
+
if files is None:
|
126 |
+
return None
|
127 |
+
|
128 |
+
filenames = []
|
129 |
+
for f in files:
|
130 |
+
filenames.append(f.name)
|
131 |
+
destfile = util.get_destfilename_from_path(filenames[0], roop.globals.output_path, '_join')
|
132 |
+
sorted_filenames = util.sort_filenames_ignore_path(filenames)
|
133 |
+
ffmpeg.join_videos(sorted_filenames, destfile, not chk_encode)
|
134 |
+
resultfiles = []
|
135 |
+
if os.path.isfile(destfile):
|
136 |
+
resultfiles.append(destfile)
|
137 |
+
else:
|
138 |
+
gr.Error('Joining videos failed!')
|
139 |
+
return resultfiles
|
140 |
+
|
141 |
+
def on_extras_create_video_from_gif(files,fps):
|
142 |
+
if files is None:
|
143 |
+
return None
|
144 |
+
|
145 |
+
filenames = []
|
146 |
+
resultfiles = []
|
147 |
+
for f in files:
|
148 |
+
filenames.append(f.name)
|
149 |
+
|
150 |
+
destfilename = os.path.join(roop.globals.output_path, "img2video." + roop.globals.CFG.output_video_format)
|
151 |
+
ffmpeg.create_video_from_gif(filenames[0], destfilename)
|
152 |
+
if os.path.isfile(destfilename):
|
153 |
+
resultfiles.append(destfilename)
|
154 |
+
return resultfiles
|
155 |
+
|
156 |
+
|
157 |
+
def on_extras_repair_video(files):
|
158 |
+
if files is None:
|
159 |
+
return None
|
160 |
+
|
161 |
+
resultfiles = []
|
162 |
+
for tf in files:
|
163 |
+
f = tf.name
|
164 |
+
destfile = util.get_destfilename_from_path(f, roop.globals.output_path, '_repair')
|
165 |
+
ffmpeg.repair_video(f, destfile)
|
166 |
+
if os.path.isfile(destfile):
|
167 |
+
resultfiles.append(destfile)
|
168 |
+
else:
|
169 |
+
gr.Error('Repairing video failed!')
|
170 |
+
return resultfiles
|
171 |
+
|
172 |
+
|
173 |
+
|
174 |
+
|
175 |
+
|
176 |
+
def on_extras_create_video(files, images_path,fps, create_gif):
|
177 |
+
if images_path is None:
|
178 |
+
return None
|
179 |
+
resultfiles = []
|
180 |
+
if len(files) > 0 and util.is_video(files[0]) and create_gif:
|
181 |
+
destfilename = files[0]
|
182 |
+
else:
|
183 |
+
util.sort_rename_frames(os.path.dirname(images_path))
|
184 |
+
destfilename = os.path.join(roop.globals.output_path, "img2video." + roop.globals.CFG.output_video_format)
|
185 |
+
ffmpeg.create_video('', destfilename, fps, images_path)
|
186 |
+
if os.path.isfile(destfilename):
|
187 |
+
resultfiles.append(destfilename)
|
188 |
+
else:
|
189 |
+
return None
|
190 |
+
if create_gif:
|
191 |
+
gifname = util.get_destfilename_from_path(destfilename, './output', '.gif')
|
192 |
+
ffmpeg.create_gif_from_video(destfilename, gifname)
|
193 |
+
if os.path.isfile(destfilename):
|
194 |
+
resultfiles.append(gifname)
|
195 |
+
return resultfiles
|
196 |
+
|
197 |
+
|
198 |
+
def on_extras_extract_frames(files):
|
199 |
+
if files is None:
|
200 |
+
return None
|
201 |
+
|
202 |
+
resultfiles = []
|
203 |
+
for tf in files:
|
204 |
+
f = tf.name
|
205 |
+
resfolder = ffmpeg.extract_frames(f)
|
206 |
+
for file in os.listdir(resfolder):
|
207 |
+
outfile = os.path.join(resfolder, file)
|
208 |
+
if os.path.isfile(outfile):
|
209 |
+
resultfiles.append(outfile)
|
210 |
+
return resultfiles
|
211 |
+
|
212 |
+
|
213 |
+
def on_frame_process(files, filterselection, upscaleselection):
|
214 |
+
import pathlib
|
215 |
+
from roop.core import batch_process_with_options
|
216 |
+
from roop.ProcessEntry import ProcessEntry
|
217 |
+
from roop.ProcessOptions import ProcessOptions
|
218 |
+
from ui.main import prepare_environment
|
219 |
+
|
220 |
+
|
221 |
+
if files is None:
|
222 |
+
return None
|
223 |
+
|
224 |
+
if roop.globals.CFG.clear_output:
|
225 |
+
clean_dir(roop.globals.output_path)
|
226 |
+
prepare_environment()
|
227 |
+
list_files_process : list[ProcessEntry] = []
|
228 |
+
|
229 |
+
for tf in files:
|
230 |
+
list_files_process.append(ProcessEntry(tf.name, 0,0, 0))
|
231 |
+
|
232 |
+
processoroptions = {}
|
233 |
+
filter = next((x for x in frame_filters_map.keys() if x == filterselection), None)
|
234 |
+
if filter is not None:
|
235 |
+
processoroptions.update(frame_filters_map[filter])
|
236 |
+
filter = next((x for x in frame_upscalers_map.keys() if x == upscaleselection), None)
|
237 |
+
if filter is not None:
|
238 |
+
processoroptions.update(frame_upscalers_map[filter])
|
239 |
+
options = ProcessOptions(processoroptions, 0, 0, "all", 0, None, None, 0, 128, False, False)
|
240 |
+
batch_process_with_options(list_files_process, options, None)
|
241 |
+
outdir = pathlib.Path(roop.globals.output_path)
|
242 |
+
outfiles = [str(item) for item in outdir.rglob("*") if item.is_file()]
|
243 |
+
return outfiles
|
244 |
+
|
245 |
+
|
ui/tabs/facemgr_tab.py
ADDED
@@ -0,0 +1,187 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import shutil
|
3 |
+
import cv2
|
4 |
+
import gradio as gr
|
5 |
+
import roop.utilities as util
|
6 |
+
import roop.globals
|
7 |
+
from roop.face_util import extract_face_images
|
8 |
+
from roop.capturer import get_video_frame, get_video_frame_total
|
9 |
+
from typing import List, Tuple, Optional
|
10 |
+
from roop.typing import Frame, Face, FaceSet
|
11 |
+
|
12 |
+
selected_face_index = -1
|
13 |
+
thumbs = []
|
14 |
+
images = []
|
15 |
+
|
16 |
+
|
17 |
+
def facemgr_tab() -> None:
|
18 |
+
with gr.Tab("👨👩👧👦 Face Management"):
|
19 |
+
with gr.Row():
|
20 |
+
gr.Markdown("""
|
21 |
+
# Create blending facesets
|
22 |
+
Add multiple reference images into a faceset file.
|
23 |
+
""")
|
24 |
+
with gr.Row():
|
25 |
+
videoimagefst = gr.Image(label="Cut face from video frame", height=576, interactive=False, visible=True, format="jpeg")
|
26 |
+
with gr.Row():
|
27 |
+
frame_num_fst = gr.Slider(1, 1, value=1, label="Frame Number", info='0:00:00', step=1.0, interactive=False)
|
28 |
+
fb_cutfromframe = gr.Button("Use faces from this frame", variant='secondary', interactive=False)
|
29 |
+
with gr.Row():
|
30 |
+
fb_facesetfile = gr.Files(label='Faceset', file_count='single', file_types=['.fsz'], interactive=True)
|
31 |
+
fb_files = gr.Files(label='Input Files', file_count="multiple", file_types=["image", "video"], interactive=True)
|
32 |
+
with gr.Row():
|
33 |
+
with gr.Column():
|
34 |
+
gr.Button("👀 Open Output Folder", size='sm').click(fn=lambda: util.open_folder(roop.globals.output_path))
|
35 |
+
with gr.Column():
|
36 |
+
gr.Markdown(' ')
|
37 |
+
with gr.Row():
|
38 |
+
faces = gr.Gallery(label="Faces in this Faceset", allow_preview=True, preview=True, height=128, object_fit="scale-down")
|
39 |
+
with gr.Row():
|
40 |
+
fb_remove = gr.Button("Remove selected", variant='secondary')
|
41 |
+
fb_update = gr.Button("Create/Update Faceset file", variant='primary')
|
42 |
+
fb_clear = gr.Button("Clear all", variant='stop')
|
43 |
+
|
44 |
+
fb_facesetfile.change(fn=on_faceset_changed, inputs=[fb_facesetfile], outputs=[faces])
|
45 |
+
fb_files.change(fn=on_fb_files_changed, inputs=[fb_files], outputs=[faces, videoimagefst, frame_num_fst, fb_cutfromframe])
|
46 |
+
fb_update.click(fn=on_update_clicked, outputs=[fb_facesetfile])
|
47 |
+
fb_remove.click(fn=on_remove_clicked, outputs=[faces])
|
48 |
+
fb_clear.click(fn=on_clear_clicked, outputs=[faces, fb_files, fb_facesetfile])
|
49 |
+
fb_cutfromframe.click(fn=on_cutfromframe_clicked, inputs=[fb_files, frame_num_fst], outputs=[faces])
|
50 |
+
frame_num_fst.release(fn=on_frame_num_fst_changed, inputs=[fb_files, frame_num_fst], outputs=[videoimagefst])
|
51 |
+
faces.select(fn=on_face_selected)
|
52 |
+
|
53 |
+
|
54 |
+
def on_faceset_changed(faceset, progress=gr.Progress()) -> List[Frame]:
|
55 |
+
global thumbs, images
|
56 |
+
|
57 |
+
if faceset is None:
|
58 |
+
return thumbs
|
59 |
+
|
60 |
+
thumbs.clear()
|
61 |
+
filename = faceset.name
|
62 |
+
|
63 |
+
if filename.lower().endswith('fsz'):
|
64 |
+
progress(0, desc="Retrieving faces from Faceset File", )
|
65 |
+
unzipfolder = os.path.join(os.environ["TEMP"], 'faceset')
|
66 |
+
if os.path.isdir(unzipfolder):
|
67 |
+
shutil.rmtree(unzipfolder)
|
68 |
+
util.mkdir_with_umask(unzipfolder)
|
69 |
+
util.unzip(filename, unzipfolder)
|
70 |
+
for file in os.listdir(unzipfolder):
|
71 |
+
if file.endswith(".png"):
|
72 |
+
SELECTION_FACES_DATA = extract_face_images(os.path.join(unzipfolder,file), (False, 0), 0.5)
|
73 |
+
if len(SELECTION_FACES_DATA) < 1:
|
74 |
+
gr.Warning(f"No face detected in {file}!")
|
75 |
+
for f in SELECTION_FACES_DATA:
|
76 |
+
image = f[1]
|
77 |
+
images.append(image)
|
78 |
+
thumbs.append(util.convert_to_gradio(image))
|
79 |
+
|
80 |
+
return thumbs
|
81 |
+
|
82 |
+
|
83 |
+
def on_fb_files_changed(inputfiles, progress=gr.Progress()) -> Tuple[List[Frame], Optional[gr.Image], Optional[gr.Slider], Optional[gr.Button]]:
|
84 |
+
global thumbs, images, total_frames, current_video_fps
|
85 |
+
|
86 |
+
if inputfiles is None or len(inputfiles) < 1:
|
87 |
+
return thumbs, None, None, None
|
88 |
+
|
89 |
+
progress(0, desc="Retrieving faces from images", )
|
90 |
+
slider = None
|
91 |
+
video_image = None
|
92 |
+
cut_button = None
|
93 |
+
for f in inputfiles:
|
94 |
+
source_path = f.name
|
95 |
+
if util.has_image_extension(source_path):
|
96 |
+
slider = gr.Slider(interactive=False)
|
97 |
+
video_image = gr.Image(interactive=False)
|
98 |
+
cut_button = gr.Button(interactive=False)
|
99 |
+
roop.globals.source_path = source_path
|
100 |
+
SELECTION_FACES_DATA = extract_face_images(roop.globals.source_path, (False, 0), 0.5)
|
101 |
+
for f in SELECTION_FACES_DATA:
|
102 |
+
image = f[1]
|
103 |
+
images.append(image)
|
104 |
+
thumbs.append(util.convert_to_gradio(image))
|
105 |
+
elif util.is_video(source_path) or source_path.lower().endswith('gif'):
|
106 |
+
total_frames = get_video_frame_total(source_path)
|
107 |
+
current_video_fps = util.detect_fps(source_path)
|
108 |
+
cut_button = gr.Button(interactive=True)
|
109 |
+
video_image, slider = display_video_frame(source_path, 1, total_frames)
|
110 |
+
|
111 |
+
return thumbs, video_image, slider, cut_button
|
112 |
+
|
113 |
+
|
114 |
+
def display_video_frame(filename: str, frame_num: int, total: int=0) -> Tuple[gr.Image, gr.Slider]:
|
115 |
+
global current_video_fps
|
116 |
+
|
117 |
+
current_frame = get_video_frame(filename, frame_num)
|
118 |
+
if current_video_fps == 0:
|
119 |
+
current_video_fps = 1
|
120 |
+
secs = (frame_num - 1) / current_video_fps
|
121 |
+
minutes = secs / 60
|
122 |
+
secs = secs % 60
|
123 |
+
hours = minutes / 60
|
124 |
+
minutes = minutes % 60
|
125 |
+
milliseconds = (secs - int(secs)) * 1000
|
126 |
+
timeinfo = f"{int(hours):0>2}:{int(minutes):0>2}:{int(secs):0>2}.{int(milliseconds):0>3}"
|
127 |
+
if total > 0:
|
128 |
+
return gr.Image(value=util.convert_to_gradio(current_frame), interactive=True), gr.Slider(info=timeinfo, minimum=1, maximum=total, interactive=True)
|
129 |
+
return gr.Image(value=util.convert_to_gradio(current_frame), interactive=True), gr.Slider(info=timeinfo, interactive=True)
|
130 |
+
|
131 |
+
|
132 |
+
def on_face_selected(evt: gr.SelectData) -> None:
|
133 |
+
global selected_face_index
|
134 |
+
|
135 |
+
if evt is not None:
|
136 |
+
selected_face_index = evt.index
|
137 |
+
|
138 |
+
def on_frame_num_fst_changed(inputfiles: List[gr.Files], frame_num: int) -> Frame:
|
139 |
+
filename = inputfiles[0].name
|
140 |
+
video_image, _ = display_video_frame(filename, frame_num, 0)
|
141 |
+
return video_image
|
142 |
+
|
143 |
+
|
144 |
+
def on_cutfromframe_clicked(inputfiles: List[gr.Files], frame_num: int) -> List[Frame]:
|
145 |
+
global thumbs
|
146 |
+
|
147 |
+
filename = inputfiles[0].name
|
148 |
+
SELECTION_FACES_DATA = extract_face_images(filename, (True, frame_num), 0.5)
|
149 |
+
for f in SELECTION_FACES_DATA:
|
150 |
+
image = f[1]
|
151 |
+
images.append(image)
|
152 |
+
thumbs.append(util.convert_to_gradio(image))
|
153 |
+
return thumbs
|
154 |
+
|
155 |
+
|
156 |
+
def on_remove_clicked() -> List[Frame]:
|
157 |
+
global thumbs, images, selected_face_index
|
158 |
+
|
159 |
+
if len(thumbs) > selected_face_index:
|
160 |
+
f = thumbs.pop(selected_face_index)
|
161 |
+
del f
|
162 |
+
f = images.pop(selected_face_index)
|
163 |
+
del f
|
164 |
+
return thumbs
|
165 |
+
|
166 |
+
def on_clear_clicked() -> Tuple[List[Frame], None, None]:
|
167 |
+
global thumbs, images
|
168 |
+
|
169 |
+
thumbs.clear()
|
170 |
+
images.clear()
|
171 |
+
return thumbs, None, None
|
172 |
+
|
173 |
+
|
174 |
+
def on_update_clicked() -> Optional[str]:
|
175 |
+
if len(images) < 1:
|
176 |
+
gr.Warning(f"No faces to create faceset from!")
|
177 |
+
return None
|
178 |
+
|
179 |
+
imgnames = []
|
180 |
+
for index,img in enumerate(images):
|
181 |
+
filename = os.path.join(roop.globals.output_path, f'{index}.png')
|
182 |
+
cv2.imwrite(filename, img)
|
183 |
+
imgnames.append(filename)
|
184 |
+
|
185 |
+
finalzip = os.path.join(roop.globals.output_path, 'faceset.fsz')
|
186 |
+
util.zip(imgnames, finalzip)
|
187 |
+
return finalzip
|
ui/tabs/faceswap_tab.py
ADDED
@@ -0,0 +1,831 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import shutil
|
3 |
+
import pathlib
|
4 |
+
import gradio as gr
|
5 |
+
import roop.utilities as util
|
6 |
+
import roop.globals
|
7 |
+
import ui.globals
|
8 |
+
from roop.face_util import extract_face_images, create_blank_image
|
9 |
+
from roop.capturer import get_video_frame, get_video_frame_total, get_image_frame
|
10 |
+
from roop.ProcessEntry import ProcessEntry
|
11 |
+
from roop.ProcessOptions import ProcessOptions
|
12 |
+
from roop.FaceSet import FaceSet
|
13 |
+
from roop.utilities import clean_dir
|
14 |
+
|
15 |
+
last_image = None
|
16 |
+
|
17 |
+
|
18 |
+
IS_INPUT = True
|
19 |
+
SELECTED_FACE_INDEX = 0
|
20 |
+
|
21 |
+
SELECTED_INPUT_FACE_INDEX = 0
|
22 |
+
SELECTED_TARGET_FACE_INDEX = 0
|
23 |
+
|
24 |
+
input_faces = None
|
25 |
+
target_faces = None
|
26 |
+
face_selection = None
|
27 |
+
previewimage = None
|
28 |
+
|
29 |
+
selected_preview_index = 0
|
30 |
+
|
31 |
+
is_processing = False
|
32 |
+
|
33 |
+
list_files_process : list[ProcessEntry] = []
|
34 |
+
no_face_choices = ["Use untouched original frame","Retry rotated", "Skip Frame", "Skip Frame if no similar face", "Use last swapped"]
|
35 |
+
swap_choices = ["First found", "All input faces", "All female", "All male", "All faces", "Selected face"]
|
36 |
+
|
37 |
+
current_video_fps = 50
|
38 |
+
|
39 |
+
manual_masking = False
|
40 |
+
|
41 |
+
|
42 |
+
def faceswap_tab():
|
43 |
+
global no_face_choices, previewimage
|
44 |
+
|
45 |
+
with gr.Tab("🎭 Face Swap"):
|
46 |
+
with gr.Row(variant='panel'):
|
47 |
+
with gr.Column(scale=2):
|
48 |
+
with gr.Row():
|
49 |
+
input_faces = gr.Gallery(label="Input faces gallery", allow_preview=False, preview=False, height=138, columns=64, object_fit="scale-down", interactive=False)
|
50 |
+
target_faces = gr.Gallery(label="Target faces gallery", allow_preview=False, preview=False, height=138, columns=64, object_fit="scale-down", interactive=False)
|
51 |
+
with gr.Row():
|
52 |
+
bt_move_left_input = gr.Button("⬅ Move left", size='sm')
|
53 |
+
bt_move_right_input = gr.Button("➡ Move right", size='sm')
|
54 |
+
bt_move_left_target = gr.Button("⬅ Move left", size='sm')
|
55 |
+
bt_move_right_target = gr.Button("➡ Move right", size='sm')
|
56 |
+
with gr.Row():
|
57 |
+
bt_remove_selected_input_face = gr.Button("❌ Remove selected", size='sm')
|
58 |
+
bt_clear_input_faces = gr.Button("💥 Clear all", variant='stop', size='sm')
|
59 |
+
bt_remove_selected_target_face = gr.Button("❌ Remove selected", size='sm')
|
60 |
+
bt_add_local = gr.Button('Add local files from', size='sm')
|
61 |
+
|
62 |
+
with gr.Row():
|
63 |
+
with gr.Column(scale=2):
|
64 |
+
with gr.Accordion(label="Advanced Masking", open=False):
|
65 |
+
chk_showmaskoffsets = gr.Checkbox(
|
66 |
+
label="Show mask overlay in preview",
|
67 |
+
value=False,
|
68 |
+
interactive=True,
|
69 |
+
)
|
70 |
+
chk_restoreoriginalmouth = gr.Checkbox(
|
71 |
+
label="Restore original mouth area",
|
72 |
+
value=False,
|
73 |
+
interactive=True,
|
74 |
+
)
|
75 |
+
mask_top = gr.Slider(
|
76 |
+
0,
|
77 |
+
1.0,
|
78 |
+
value=0,
|
79 |
+
label="Offset Face Top",
|
80 |
+
step=0.01,
|
81 |
+
interactive=True,
|
82 |
+
)
|
83 |
+
mask_bottom = gr.Slider(
|
84 |
+
0,
|
85 |
+
1.0,
|
86 |
+
value=0,
|
87 |
+
label="Offset Face Bottom",
|
88 |
+
step=0.01,
|
89 |
+
interactive=True,
|
90 |
+
)
|
91 |
+
mask_left = gr.Slider(
|
92 |
+
0,
|
93 |
+
1.0,
|
94 |
+
value=0,
|
95 |
+
label="Offset Face Left",
|
96 |
+
step=0.01,
|
97 |
+
interactive=True,
|
98 |
+
)
|
99 |
+
mask_right = gr.Slider(
|
100 |
+
0,
|
101 |
+
1.0,
|
102 |
+
value=0,
|
103 |
+
label="Offset Face Right",
|
104 |
+
step=0.01,
|
105 |
+
interactive=True,
|
106 |
+
)
|
107 |
+
mask_erosion = gr.Slider(
|
108 |
+
1.0,
|
109 |
+
3.0,
|
110 |
+
value=1.0,
|
111 |
+
label="Erosion Iterations",
|
112 |
+
step=1.00,
|
113 |
+
interactive=True,
|
114 |
+
)
|
115 |
+
mask_blur = gr.Slider(
|
116 |
+
10.0,
|
117 |
+
50.0,
|
118 |
+
value=20.0,
|
119 |
+
label="Blur size",
|
120 |
+
step=1.00,
|
121 |
+
interactive=True,
|
122 |
+
)
|
123 |
+
bt_toggle_masking = gr.Button(
|
124 |
+
"Toggle manual masking", variant="secondary", size="sm"
|
125 |
+
)
|
126 |
+
selected_mask_engine = gr.Dropdown(
|
127 |
+
["None", "Clip2Seg", "DFL XSeg"],
|
128 |
+
value="None",
|
129 |
+
label="Face masking engine",
|
130 |
+
)
|
131 |
+
clip_text = gr.Textbox(
|
132 |
+
label="List of objects to mask and restore back on fake face",
|
133 |
+
value="cup,hands,hair,banana",
|
134 |
+
interactive=False,
|
135 |
+
)
|
136 |
+
bt_preview_mask = gr.Button(
|
137 |
+
"👥 Show Mask Preview", variant="secondary"
|
138 |
+
)
|
139 |
+
with gr.Column(scale=2):
|
140 |
+
local_folder = gr.Textbox(show_label=False, placeholder="/content/", interactive=True)
|
141 |
+
with gr.Row(variant='panel'):
|
142 |
+
bt_srcfiles = gr.Files(label='Source Images or Facesets', file_count="multiple", file_types=["image", ".fsz"], elem_id='filelist', height=233)
|
143 |
+
bt_destfiles = gr.Files(label='Target File(s)', file_count="multiple", file_types=["image", "video"], elem_id='filelist', height=233)
|
144 |
+
with gr.Row(variant='panel'):
|
145 |
+
gr.Markdown('')
|
146 |
+
forced_fps = gr.Slider(minimum=0, maximum=120, value=0, label="Video FPS", info='Overrides detected fps if not 0', step=1.0, interactive=True, container=True)
|
147 |
+
|
148 |
+
with gr.Column(scale=2):
|
149 |
+
previewimage = gr.Image(label="Preview Image", height=576, interactive=False, visible=True, format=get_gradio_output_format())
|
150 |
+
maskimage = gr.ImageEditor(label="Manual mask Image", sources=["clipboard"], transforms="", type="numpy",
|
151 |
+
brush=gr.Brush(color_mode="fixed", colors=["rgba(255, 255, 255, 1"]), interactive=True, visible=False)
|
152 |
+
with gr.Row(variant='panel'):
|
153 |
+
fake_preview = gr.Checkbox(label="Face swap frames", value=False)
|
154 |
+
bt_refresh_preview = gr.Button("🔄 Refresh", variant='secondary', size='sm')
|
155 |
+
bt_use_face_from_preview = gr.Button("Use Face from this Frame", variant='primary', size='sm')
|
156 |
+
with gr.Row():
|
157 |
+
preview_frame_num = gr.Slider(1, 1, value=1, label="Frame Number", info='0:00:00', step=1.0, interactive=True)
|
158 |
+
with gr.Row():
|
159 |
+
text_frame_clip = gr.Markdown('Processing frame range [0 - 0]')
|
160 |
+
set_frame_start = gr.Button("⬅ Set as Start", size='sm')
|
161 |
+
set_frame_end = gr.Button("➡ Set as End", size='sm')
|
162 |
+
with gr.Row(visible=False) as dynamic_face_selection:
|
163 |
+
with gr.Column(scale=2):
|
164 |
+
face_selection = gr.Gallery(label="Detected faces", allow_preview=False, preview=False, height=138, object_fit="cover", columns=32)
|
165 |
+
with gr.Column():
|
166 |
+
bt_faceselect = gr.Button("☑ Use selected face", size='sm')
|
167 |
+
bt_cancelfaceselect = gr.Button("Done", size='sm')
|
168 |
+
with gr.Column():
|
169 |
+
gr.Markdown(' ')
|
170 |
+
|
171 |
+
with gr.Row(variant='panel'):
|
172 |
+
with gr.Column(scale=1):
|
173 |
+
selected_face_detection = gr.Dropdown(swap_choices, value="First found", label="Specify face selection for swapping")
|
174 |
+
with gr.Column(scale=1):
|
175 |
+
num_swap_steps = gr.Slider(1, 5, value=1, step=1.0, label="Number of swapping steps", info="More steps may increase likeness")
|
176 |
+
with gr.Column(scale=2):
|
177 |
+
ui.globals.ui_selected_enhancer = gr.Dropdown(["None", "Codeformer", "DMDNet", "GFPGAN", "GPEN", "Restoreformer++"], value="None", label="Select post-processing")
|
178 |
+
|
179 |
+
with gr.Row(variant='panel'):
|
180 |
+
with gr.Column(scale=1):
|
181 |
+
max_face_distance = gr.Slider(0.01, 1.0, value=0.65, label="Max Face Similarity Threshold", info="0.0 = identical 1.0 = no similarity")
|
182 |
+
with gr.Column(scale=1):
|
183 |
+
ui.globals.ui_upscale = gr.Dropdown(["128px", "256px", "512px"], value="128px", label="Subsample upscale to", interactive=True)
|
184 |
+
with gr.Column(scale=2):
|
185 |
+
ui.globals.ui_blend_ratio = gr.Slider(0.0, 1.0, value=0.65, label="Original/Enhanced image blend ratio", info="Only used with active post-processing")
|
186 |
+
|
187 |
+
with gr.Row(variant='panel'):
|
188 |
+
with gr.Column(scale=1):
|
189 |
+
video_swapping_method = gr.Dropdown(["Extract Frames to media","In-Memory processing"], value="In-Memory processing", label="Select video processing method", interactive=True)
|
190 |
+
no_face_action = gr.Dropdown(choices=no_face_choices, value=no_face_choices[0], label="Action on no face detected", interactive=True)
|
191 |
+
vr_mode = gr.Checkbox(label="VR Mode", value=False)
|
192 |
+
with gr.Column(scale=1):
|
193 |
+
with gr.Group():
|
194 |
+
autorotate = gr.Checkbox(label="Auto rotate horizontal Faces", value=True)
|
195 |
+
roop.globals.skip_audio = gr.Checkbox(label="Skip audio", value=False)
|
196 |
+
roop.globals.keep_frames = gr.Checkbox(label="Keep Frames (relevant only when extracting frames)", value=False)
|
197 |
+
roop.globals.wait_after_extraction = gr.Checkbox(label="Wait for user key press before creating video ", value=False)
|
198 |
+
|
199 |
+
with gr.Row(variant='panel'):
|
200 |
+
with gr.Column():
|
201 |
+
bt_start = gr.Button("▶ Start", variant='primary')
|
202 |
+
with gr.Column():
|
203 |
+
bt_stop = gr.Button("⏹ Stop", variant='secondary', interactive=False)
|
204 |
+
gr.Button("👀 Open Output Folder", size='sm').click(fn=lambda: util.open_folder(roop.globals.output_path))
|
205 |
+
with gr.Column(scale=2):
|
206 |
+
output_method = gr.Dropdown(["File","Virtual Camera", "Both"], value="File", label="Select Output Method", interactive=True)
|
207 |
+
with gr.Row(variant='panel'):
|
208 |
+
with gr.Column():
|
209 |
+
resultfiles = gr.Files(label='Processed File(s)', interactive=False)
|
210 |
+
with gr.Column():
|
211 |
+
resultimage = gr.Image(type='filepath', label='Final Image', interactive=False )
|
212 |
+
resultvideo = gr.Video(label='Final Video', interactive=False, visible=False)
|
213 |
+
|
214 |
+
previewinputs = [preview_frame_num, bt_destfiles, fake_preview, ui.globals.ui_selected_enhancer, selected_face_detection,
|
215 |
+
max_face_distance, ui.globals.ui_blend_ratio, selected_mask_engine, clip_text, no_face_action, vr_mode, autorotate, maskimage, chk_showmaskoffsets, chk_restoreoriginalmouth, num_swap_steps, ui.globals.ui_upscale]
|
216 |
+
previewoutputs = [previewimage, maskimage, preview_frame_num]
|
217 |
+
input_faces.select(on_select_input_face, None, None).success(fn=on_preview_frame_changed, inputs=previewinputs, outputs=previewoutputs)
|
218 |
+
|
219 |
+
bt_move_left_input.click(fn=move_selected_input, inputs=[bt_move_left_input], outputs=[input_faces])
|
220 |
+
bt_move_right_input.click(fn=move_selected_input, inputs=[bt_move_right_input], outputs=[input_faces])
|
221 |
+
bt_move_left_target.click(fn=move_selected_target, inputs=[bt_move_left_target], outputs=[target_faces])
|
222 |
+
bt_move_right_target.click(fn=move_selected_target, inputs=[bt_move_right_target], outputs=[target_faces])
|
223 |
+
|
224 |
+
bt_remove_selected_input_face.click(fn=remove_selected_input_face, outputs=[input_faces])
|
225 |
+
bt_srcfiles.change(fn=on_srcfile_changed, show_progress='full', inputs=bt_srcfiles, outputs=[dynamic_face_selection, face_selection, input_faces, bt_srcfiles])
|
226 |
+
|
227 |
+
mask_top.release(fn=on_mask_top_changed, inputs=[mask_top], show_progress='hidden')
|
228 |
+
mask_bottom.release(fn=on_mask_bottom_changed, inputs=[mask_bottom], show_progress='hidden')
|
229 |
+
mask_left.release(fn=on_mask_left_changed, inputs=[mask_left], show_progress='hidden')
|
230 |
+
mask_right.release(fn=on_mask_right_changed, inputs=[mask_right], show_progress='hidden')
|
231 |
+
mask_erosion.release(fn=on_mask_erosion_changed, inputs=[mask_erosion], show_progress='hidden')
|
232 |
+
mask_blur.release(fn=on_mask_blur_changed, inputs=[mask_blur], show_progress='hidden')
|
233 |
+
selected_mask_engine.change(fn=on_mask_engine_changed, inputs=[selected_mask_engine], outputs=[clip_text], show_progress='hidden')
|
234 |
+
|
235 |
+
target_faces.select(on_select_target_face, None, None)
|
236 |
+
bt_remove_selected_target_face.click(fn=remove_selected_target_face, outputs=[target_faces])
|
237 |
+
|
238 |
+
forced_fps.change(fn=on_fps_changed, inputs=[forced_fps], show_progress='hidden')
|
239 |
+
bt_destfiles.change(fn=on_destfiles_changed, inputs=[bt_destfiles], outputs=[preview_frame_num, text_frame_clip], show_progress='hidden').success(fn=on_preview_frame_changed, inputs=previewinputs, outputs=previewoutputs, show_progress='hidden')
|
240 |
+
bt_destfiles.select(fn=on_destfiles_selected, outputs=[preview_frame_num, text_frame_clip, forced_fps], show_progress='hidden').success(fn=on_preview_frame_changed, inputs=previewinputs, outputs=previewoutputs, show_progress='hidden')
|
241 |
+
bt_destfiles.clear(fn=on_clear_destfiles, outputs=[target_faces, selected_face_detection])
|
242 |
+
resultfiles.select(fn=on_resultfiles_selected, inputs=[resultfiles], outputs=[resultimage, resultvideo])
|
243 |
+
|
244 |
+
face_selection.select(on_select_face, None, None)
|
245 |
+
bt_faceselect.click(fn=on_selected_face, outputs=[input_faces, target_faces, selected_face_detection])
|
246 |
+
bt_cancelfaceselect.click(fn=on_end_face_selection, outputs=[dynamic_face_selection, face_selection])
|
247 |
+
|
248 |
+
bt_clear_input_faces.click(fn=on_clear_input_faces, outputs=[input_faces])
|
249 |
+
|
250 |
+
bt_add_local.click(fn=on_add_local_folder, inputs=[local_folder], outputs=[bt_destfiles])
|
251 |
+
bt_preview_mask.click(fn=on_preview_mask, inputs=[preview_frame_num, bt_destfiles, clip_text, selected_mask_engine], outputs=[previewimage])
|
252 |
+
|
253 |
+
start_event = bt_start.click(fn=start_swap,
|
254 |
+
inputs=[output_method, ui.globals.ui_selected_enhancer, selected_face_detection, roop.globals.keep_frames, roop.globals.wait_after_extraction,
|
255 |
+
roop.globals.skip_audio, max_face_distance, ui.globals.ui_blend_ratio, selected_mask_engine, clip_text,video_swapping_method, no_face_action, vr_mode, autorotate, chk_restoreoriginalmouth, num_swap_steps, ui.globals.ui_upscale, maskimage],
|
256 |
+
outputs=[bt_start, bt_stop, resultfiles], show_progress='full')
|
257 |
+
after_swap_event = start_event.success(fn=on_resultfiles_finished, inputs=[resultfiles], outputs=[resultimage, resultvideo])
|
258 |
+
|
259 |
+
bt_stop.click(fn=stop_swap, cancels=[start_event, after_swap_event], outputs=[bt_start, bt_stop], queue=False)
|
260 |
+
|
261 |
+
bt_refresh_preview.click(fn=on_preview_frame_changed, inputs=previewinputs, outputs=previewoutputs)
|
262 |
+
bt_toggle_masking.click(fn=on_toggle_masking, inputs=[previewimage, maskimage], outputs=[previewimage, maskimage])
|
263 |
+
fake_preview.change(fn=on_preview_frame_changed, inputs=previewinputs, outputs=previewoutputs)
|
264 |
+
preview_frame_num.release(fn=on_preview_frame_changed, inputs=previewinputs, outputs=previewoutputs, show_progress='hidden', )
|
265 |
+
bt_use_face_from_preview.click(fn=on_use_face_from_selected, show_progress='full', inputs=[bt_destfiles, preview_frame_num], outputs=[dynamic_face_selection, face_selection, target_faces, selected_face_detection])
|
266 |
+
set_frame_start.click(fn=on_set_frame, inputs=[set_frame_start, preview_frame_num], outputs=[text_frame_clip])
|
267 |
+
set_frame_end.click(fn=on_set_frame, inputs=[set_frame_end, preview_frame_num], outputs=[text_frame_clip])
|
268 |
+
|
269 |
+
|
270 |
+
def on_mask_top_changed(mask_offset):
|
271 |
+
set_mask_offset(0, mask_offset)
|
272 |
+
|
273 |
+
def on_mask_bottom_changed(mask_offset):
|
274 |
+
set_mask_offset(1, mask_offset)
|
275 |
+
|
276 |
+
def on_mask_left_changed(mask_offset):
|
277 |
+
set_mask_offset(2, mask_offset)
|
278 |
+
|
279 |
+
def on_mask_right_changed(mask_offset):
|
280 |
+
set_mask_offset(3, mask_offset)
|
281 |
+
|
282 |
+
def on_mask_erosion_changed(mask_offset):
|
283 |
+
set_mask_offset(4, mask_offset)
|
284 |
+
def on_mask_blur_changed(mask_offset):
|
285 |
+
set_mask_offset(5, mask_offset)
|
286 |
+
|
287 |
+
|
288 |
+
def set_mask_offset(index, mask_offset):
|
289 |
+
global SELECTED_INPUT_FACE_INDEX
|
290 |
+
|
291 |
+
if len(roop.globals.INPUT_FACESETS) > SELECTED_INPUT_FACE_INDEX:
|
292 |
+
offs = roop.globals.INPUT_FACESETS[SELECTED_INPUT_FACE_INDEX].faces[0].mask_offsets
|
293 |
+
offs[index] = mask_offset
|
294 |
+
if offs[0] + offs[1] > 0.99:
|
295 |
+
offs[0] = 0.99
|
296 |
+
offs[1] = 0.0
|
297 |
+
if offs[2] + offs[3] > 0.99:
|
298 |
+
offs[2] = 0.99
|
299 |
+
offs[3] = 0.0
|
300 |
+
roop.globals.INPUT_FACESETS[SELECTED_INPUT_FACE_INDEX].faces[0].mask_offsets = offs
|
301 |
+
|
302 |
+
def on_mask_engine_changed(mask_engine):
|
303 |
+
if mask_engine == "Clip2Seg":
|
304 |
+
return gr.Textbox(interactive=True)
|
305 |
+
return gr.Textbox(interactive=False)
|
306 |
+
|
307 |
+
|
308 |
+
def on_add_local_folder(folder):
|
309 |
+
files = util.get_local_files_from_folder(folder)
|
310 |
+
if files is None:
|
311 |
+
gr.Warning("Empty folder or folder not found!")
|
312 |
+
return files
|
313 |
+
|
314 |
+
|
315 |
+
def on_srcfile_changed(srcfiles, progress=gr.Progress()):
|
316 |
+
global SELECTION_FACES_DATA, IS_INPUT, input_faces, face_selection, last_image
|
317 |
+
|
318 |
+
IS_INPUT = True
|
319 |
+
|
320 |
+
if srcfiles is None or len(srcfiles) < 1:
|
321 |
+
return gr.Column(visible=False), None, ui.globals.ui_input_thumbs, None
|
322 |
+
|
323 |
+
for f in srcfiles:
|
324 |
+
source_path = f.name
|
325 |
+
if source_path.lower().endswith('fsz'):
|
326 |
+
progress(0, desc="Retrieving faces from Faceset File")
|
327 |
+
unzipfolder = os.path.join(os.environ["TEMP"], 'faceset')
|
328 |
+
if os.path.isdir(unzipfolder):
|
329 |
+
files = os.listdir(unzipfolder)
|
330 |
+
for file in files:
|
331 |
+
os.remove(os.path.join(unzipfolder, file))
|
332 |
+
else:
|
333 |
+
os.makedirs(unzipfolder)
|
334 |
+
util.mkdir_with_umask(unzipfolder)
|
335 |
+
util.unzip(source_path, unzipfolder)
|
336 |
+
is_first = True
|
337 |
+
face_set = FaceSet()
|
338 |
+
for file in os.listdir(unzipfolder):
|
339 |
+
if file.endswith(".png"):
|
340 |
+
filename = os.path.join(unzipfolder,file)
|
341 |
+
progress(0, desc="Extracting faceset")
|
342 |
+
SELECTION_FACES_DATA = extract_face_images(filename, (False, 0))
|
343 |
+
for f in SELECTION_FACES_DATA:
|
344 |
+
face = f[0]
|
345 |
+
face.mask_offsets = (0,0,0,0,1,20)
|
346 |
+
face_set.faces.append(face)
|
347 |
+
if is_first:
|
348 |
+
image = util.convert_to_gradio(f[1])
|
349 |
+
ui.globals.ui_input_thumbs.append(image)
|
350 |
+
is_first = False
|
351 |
+
face_set.ref_images.append(get_image_frame(filename))
|
352 |
+
if len(face_set.faces) > 0:
|
353 |
+
if len(face_set.faces) > 1:
|
354 |
+
face_set.AverageEmbeddings()
|
355 |
+
roop.globals.INPUT_FACESETS.append(face_set)
|
356 |
+
|
357 |
+
elif util.has_image_extension(source_path):
|
358 |
+
progress(0, desc="Retrieving faces from image")
|
359 |
+
roop.globals.source_path = source_path
|
360 |
+
SELECTION_FACES_DATA = extract_face_images(roop.globals.source_path, (False, 0))
|
361 |
+
progress(0.5, desc="Retrieving faces from image")
|
362 |
+
for f in SELECTION_FACES_DATA:
|
363 |
+
face_set = FaceSet()
|
364 |
+
face = f[0]
|
365 |
+
face.mask_offsets = (0,0,0,0,1,20)
|
366 |
+
face_set.faces.append(face)
|
367 |
+
image = util.convert_to_gradio(f[1])
|
368 |
+
ui.globals.ui_input_thumbs.append(image)
|
369 |
+
roop.globals.INPUT_FACESETS.append(face_set)
|
370 |
+
|
371 |
+
progress(1.0)
|
372 |
+
return gr.Column(visible=False), None, ui.globals.ui_input_thumbs,None
|
373 |
+
|
374 |
+
|
375 |
+
def on_select_input_face(evt: gr.SelectData):
|
376 |
+
global SELECTED_INPUT_FACE_INDEX
|
377 |
+
|
378 |
+
SELECTED_INPUT_FACE_INDEX = evt.index
|
379 |
+
|
380 |
+
|
381 |
+
def remove_selected_input_face():
|
382 |
+
global SELECTED_INPUT_FACE_INDEX
|
383 |
+
|
384 |
+
if len(roop.globals.INPUT_FACESETS) > SELECTED_INPUT_FACE_INDEX:
|
385 |
+
f = roop.globals.INPUT_FACESETS.pop(SELECTED_INPUT_FACE_INDEX)
|
386 |
+
del f
|
387 |
+
if len(ui.globals.ui_input_thumbs) > SELECTED_INPUT_FACE_INDEX:
|
388 |
+
f = ui.globals.ui_input_thumbs.pop(SELECTED_INPUT_FACE_INDEX)
|
389 |
+
del f
|
390 |
+
|
391 |
+
return ui.globals.ui_input_thumbs
|
392 |
+
|
393 |
+
def move_selected_input(button_text):
|
394 |
+
global SELECTED_INPUT_FACE_INDEX
|
395 |
+
|
396 |
+
if button_text == "⬅ Move left":
|
397 |
+
if SELECTED_INPUT_FACE_INDEX <= 0:
|
398 |
+
return ui.globals.ui_input_thumbs
|
399 |
+
offset = -1
|
400 |
+
else:
|
401 |
+
if len(ui.globals.ui_input_thumbs) <= SELECTED_INPUT_FACE_INDEX:
|
402 |
+
return ui.globals.ui_input_thumbs
|
403 |
+
offset = 1
|
404 |
+
|
405 |
+
f = roop.globals.INPUT_FACESETS.pop(SELECTED_INPUT_FACE_INDEX)
|
406 |
+
roop.globals.INPUT_FACESETS.insert(SELECTED_INPUT_FACE_INDEX + offset, f)
|
407 |
+
f = ui.globals.ui_input_thumbs.pop(SELECTED_INPUT_FACE_INDEX)
|
408 |
+
ui.globals.ui_input_thumbs.insert(SELECTED_INPUT_FACE_INDEX + offset, f)
|
409 |
+
return ui.globals.ui_input_thumbs
|
410 |
+
|
411 |
+
|
412 |
+
def move_selected_target(button_text):
|
413 |
+
global SELECTED_TARGET_FACE_INDEX
|
414 |
+
|
415 |
+
if button_text == "⬅ Move left":
|
416 |
+
if SELECTED_TARGET_FACE_INDEX <= 0:
|
417 |
+
return ui.globals.ui_target_thumbs
|
418 |
+
offset = -1
|
419 |
+
else:
|
420 |
+
if len(ui.globals.ui_target_thumbs) <= SELECTED_TARGET_FACE_INDEX:
|
421 |
+
return ui.globals.ui_target_thumbs
|
422 |
+
offset = 1
|
423 |
+
|
424 |
+
f = roop.globals.TARGET_FACES.pop(SELECTED_TARGET_FACE_INDEX)
|
425 |
+
roop.globals.TARGET_FACES.insert(SELECTED_TARGET_FACE_INDEX + offset, f)
|
426 |
+
f = ui.globals.ui_target_thumbs.pop(SELECTED_TARGET_FACE_INDEX)
|
427 |
+
ui.globals.ui_target_thumbs.insert(SELECTED_TARGET_FACE_INDEX + offset, f)
|
428 |
+
return ui.globals.ui_target_thumbs
|
429 |
+
|
430 |
+
|
431 |
+
|
432 |
+
|
433 |
+
def on_select_target_face(evt: gr.SelectData):
|
434 |
+
global SELECTED_TARGET_FACE_INDEX
|
435 |
+
|
436 |
+
SELECTED_TARGET_FACE_INDEX = evt.index
|
437 |
+
|
438 |
+
def remove_selected_target_face():
|
439 |
+
if len(ui.globals.ui_target_thumbs) > SELECTED_TARGET_FACE_INDEX:
|
440 |
+
f = roop.globals.TARGET_FACES.pop(SELECTED_TARGET_FACE_INDEX)
|
441 |
+
del f
|
442 |
+
if len(ui.globals.ui_target_thumbs) > SELECTED_TARGET_FACE_INDEX:
|
443 |
+
f = ui.globals.ui_target_thumbs.pop(SELECTED_TARGET_FACE_INDEX)
|
444 |
+
del f
|
445 |
+
return ui.globals.ui_target_thumbs
|
446 |
+
|
447 |
+
|
448 |
+
def on_use_face_from_selected(files, frame_num):
|
449 |
+
global IS_INPUT, SELECTION_FACES_DATA
|
450 |
+
|
451 |
+
IS_INPUT = False
|
452 |
+
thumbs = []
|
453 |
+
|
454 |
+
roop.globals.target_path = files[selected_preview_index].name
|
455 |
+
if util.is_image(roop.globals.target_path) and not roop.globals.target_path.lower().endswith(('gif')):
|
456 |
+
SELECTION_FACES_DATA = extract_face_images(roop.globals.target_path, (False, 0))
|
457 |
+
if len(SELECTION_FACES_DATA) > 0:
|
458 |
+
for f in SELECTION_FACES_DATA:
|
459 |
+
image = util.convert_to_gradio(f[1])
|
460 |
+
thumbs.append(image)
|
461 |
+
else:
|
462 |
+
gr.Info('No faces detected!')
|
463 |
+
roop.globals.target_path = None
|
464 |
+
|
465 |
+
elif util.is_video(roop.globals.target_path) or roop.globals.target_path.lower().endswith(('gif')):
|
466 |
+
selected_frame = frame_num
|
467 |
+
SELECTION_FACES_DATA = extract_face_images(roop.globals.target_path, (True, selected_frame))
|
468 |
+
if len(SELECTION_FACES_DATA) > 0:
|
469 |
+
for f in SELECTION_FACES_DATA:
|
470 |
+
image = util.convert_to_gradio(f[1])
|
471 |
+
thumbs.append(image)
|
472 |
+
else:
|
473 |
+
gr.Info('No faces detected!')
|
474 |
+
roop.globals.target_path = None
|
475 |
+
else:
|
476 |
+
gr.Info('Unknown image/video type!')
|
477 |
+
roop.globals.target_path = None
|
478 |
+
|
479 |
+
if len(thumbs) == 1:
|
480 |
+
roop.globals.TARGET_FACES.append(SELECTION_FACES_DATA[0][0])
|
481 |
+
ui.globals.ui_target_thumbs.append(thumbs[0])
|
482 |
+
return gr.Row(visible=False), None, ui.globals.ui_target_thumbs, gr.Dropdown(value='Selected face')
|
483 |
+
|
484 |
+
return gr.Row(visible=True), thumbs, gr.Gallery(visible=True), gr.Dropdown(visible=True)
|
485 |
+
|
486 |
+
|
487 |
+
def on_select_face(evt: gr.SelectData): # SelectData is a subclass of EventData
|
488 |
+
global SELECTED_FACE_INDEX
|
489 |
+
SELECTED_FACE_INDEX = evt.index
|
490 |
+
|
491 |
+
|
492 |
+
def on_selected_face():
|
493 |
+
global IS_INPUT, SELECTED_FACE_INDEX, SELECTION_FACES_DATA
|
494 |
+
|
495 |
+
fd = SELECTION_FACES_DATA[SELECTED_FACE_INDEX]
|
496 |
+
image = util.convert_to_gradio(fd[1])
|
497 |
+
if IS_INPUT:
|
498 |
+
face_set = FaceSet()
|
499 |
+
fd[0].mask_offsets = (0,0,0,0,1,20)
|
500 |
+
face_set.faces.append(fd[0])
|
501 |
+
roop.globals.INPUT_FACESETS.append(face_set)
|
502 |
+
ui.globals.ui_input_thumbs.append(image)
|
503 |
+
return ui.globals.ui_input_thumbs, gr.Gallery(visible=True), gr.Dropdown(visible=True)
|
504 |
+
else:
|
505 |
+
roop.globals.TARGET_FACES.append(fd[0])
|
506 |
+
ui.globals.ui_target_thumbs.append(image)
|
507 |
+
return gr.Gallery(visible=True), ui.globals.ui_target_thumbs, gr.Dropdown(value='Selected face')
|
508 |
+
|
509 |
+
# bt_faceselect.click(fn=on_selected_face, outputs=[dynamic_face_selection, face_selection, input_faces, target_faces])
|
510 |
+
|
511 |
+
def on_end_face_selection():
|
512 |
+
return gr.Column(visible=False), None
|
513 |
+
|
514 |
+
|
515 |
+
def on_preview_frame_changed(frame_num, files, fake_preview, enhancer, detection, face_distance, blend_ratio,
|
516 |
+
selected_mask_engine, clip_text, no_face_action, vr_mode, auto_rotate, maskimage, show_face_area, restore_original_mouth, num_steps, upsample):
|
517 |
+
global SELECTED_INPUT_FACE_INDEX, manual_masking, current_video_fps
|
518 |
+
|
519 |
+
from roop.core import live_swap, get_processing_plugins
|
520 |
+
|
521 |
+
manual_masking = False
|
522 |
+
mask_offsets = (0,0,0,0)
|
523 |
+
if len(roop.globals.INPUT_FACESETS) > SELECTED_INPUT_FACE_INDEX:
|
524 |
+
if not hasattr(roop.globals.INPUT_FACESETS[SELECTED_INPUT_FACE_INDEX].faces[0], 'mask_offsets'):
|
525 |
+
roop.globals.INPUT_FACESETS[SELECTED_INPUT_FACE_INDEX].faces[0].mask_offsets = mask_offsets
|
526 |
+
mask_offsets = roop.globals.INPUT_FACESETS[SELECTED_INPUT_FACE_INDEX].faces[0].mask_offsets
|
527 |
+
|
528 |
+
timeinfo = '0:00:00'
|
529 |
+
if files is None or selected_preview_index >= len(files) or frame_num is None:
|
530 |
+
return None,None, gr.Slider(info=timeinfo)
|
531 |
+
|
532 |
+
filename = files[selected_preview_index].name
|
533 |
+
if util.is_video(filename) or filename.lower().endswith('gif'):
|
534 |
+
current_frame = get_video_frame(filename, frame_num)
|
535 |
+
if current_video_fps == 0:
|
536 |
+
current_video_fps = 1
|
537 |
+
secs = (frame_num - 1) / current_video_fps
|
538 |
+
minutes = secs / 60
|
539 |
+
secs = secs % 60
|
540 |
+
hours = minutes / 60
|
541 |
+
minutes = minutes % 60
|
542 |
+
milliseconds = (secs - int(secs)) * 1000
|
543 |
+
timeinfo = f"{int(hours):0>2}:{int(minutes):0>2}:{int(secs):0>2}.{int(milliseconds):0>3}"
|
544 |
+
else:
|
545 |
+
current_frame = get_image_frame(filename)
|
546 |
+
if current_frame is None:
|
547 |
+
return None, None, gr.Slider(info=timeinfo)
|
548 |
+
|
549 |
+
layers = None
|
550 |
+
if maskimage is not None:
|
551 |
+
layers = maskimage["layers"]
|
552 |
+
|
553 |
+
if not fake_preview or len(roop.globals.INPUT_FACESETS) < 1:
|
554 |
+
return gr.Image(value=util.convert_to_gradio(current_frame), visible=True), gr.ImageEditor(visible=False), gr.Slider(info=timeinfo)
|
555 |
+
|
556 |
+
roop.globals.face_swap_mode = translate_swap_mode(detection)
|
557 |
+
roop.globals.selected_enhancer = enhancer
|
558 |
+
roop.globals.distance_threshold = face_distance
|
559 |
+
roop.globals.blend_ratio = blend_ratio
|
560 |
+
roop.globals.no_face_action = index_of_no_face_action(no_face_action)
|
561 |
+
roop.globals.vr_mode = vr_mode
|
562 |
+
roop.globals.autorotate_faces = auto_rotate
|
563 |
+
roop.globals.subsample_size = int(upsample[:3])
|
564 |
+
|
565 |
+
|
566 |
+
mask_engine = map_mask_engine(selected_mask_engine, clip_text)
|
567 |
+
|
568 |
+
roop.globals.execution_threads = roop.globals.CFG.max_threads
|
569 |
+
mask = layers[0] if layers is not None else None
|
570 |
+
face_index = SELECTED_INPUT_FACE_INDEX
|
571 |
+
if len(roop.globals.INPUT_FACESETS) <= face_index:
|
572 |
+
face_index = 0
|
573 |
+
|
574 |
+
options = ProcessOptions(get_processing_plugins(mask_engine), roop.globals.distance_threshold, roop.globals.blend_ratio,
|
575 |
+
roop.globals.face_swap_mode, face_index, clip_text, maskimage, num_steps, roop.globals.subsample_size, show_face_area, restore_original_mouth)
|
576 |
+
|
577 |
+
current_frame = live_swap(current_frame, options)
|
578 |
+
if current_frame is None:
|
579 |
+
return gr.Image(visible=True), None, gr.Slider(info=timeinfo)
|
580 |
+
return gr.Image(value=util.convert_to_gradio(current_frame), visible=True), gr.ImageEditor(visible=False), gr.Slider(info=timeinfo)
|
581 |
+
|
582 |
+
def map_mask_engine(selected_mask_engine, clip_text):
|
583 |
+
if selected_mask_engine == "Clip2Seg":
|
584 |
+
mask_engine = "mask_clip2seg"
|
585 |
+
if clip_text is None or len(clip_text) < 1:
|
586 |
+
mask_engine = None
|
587 |
+
elif selected_mask_engine == "DFL XSeg":
|
588 |
+
mask_engine = "mask_xseg"
|
589 |
+
else:
|
590 |
+
mask_engine = None
|
591 |
+
return mask_engine
|
592 |
+
|
593 |
+
|
594 |
+
def on_toggle_masking(previewimage, mask):
|
595 |
+
global manual_masking
|
596 |
+
|
597 |
+
manual_masking = not manual_masking
|
598 |
+
if manual_masking:
|
599 |
+
layers = mask["layers"]
|
600 |
+
if len(layers) == 1:
|
601 |
+
layers = [create_blank_image(previewimage.shape[1],previewimage.shape[0])]
|
602 |
+
return gr.Image(visible=False), gr.ImageEditor(value={"background": previewimage, "layers": layers, "composite": None}, visible=True)
|
603 |
+
return gr.Image(visible=True), gr.ImageEditor(visible=False)
|
604 |
+
|
605 |
+
def gen_processing_text(start, end):
|
606 |
+
return f'Processing frame range [{start} - {end}]'
|
607 |
+
|
608 |
+
def on_set_frame(sender:str, frame_num):
|
609 |
+
global selected_preview_index, list_files_process
|
610 |
+
|
611 |
+
idx = selected_preview_index
|
612 |
+
if list_files_process[idx].endframe == 0:
|
613 |
+
return gen_processing_text(0,0)
|
614 |
+
|
615 |
+
start = list_files_process[idx].startframe
|
616 |
+
end = list_files_process[idx].endframe
|
617 |
+
if sender.lower().endswith('start'):
|
618 |
+
list_files_process[idx].startframe = min(frame_num, end)
|
619 |
+
else:
|
620 |
+
list_files_process[idx].endframe = max(frame_num, start)
|
621 |
+
|
622 |
+
return gen_processing_text(list_files_process[idx].startframe,list_files_process[idx].endframe)
|
623 |
+
|
624 |
+
|
625 |
+
def on_preview_mask(frame_num, files, clip_text, mask_engine):
|
626 |
+
from roop.core import live_swap, get_processing_plugins
|
627 |
+
global is_processing
|
628 |
+
|
629 |
+
if is_processing or files is None or selected_preview_index >= len(files) or clip_text is None or frame_num is None:
|
630 |
+
return None
|
631 |
+
|
632 |
+
filename = files[selected_preview_index].name
|
633 |
+
if util.is_video(filename) or filename.lower().endswith('gif'):
|
634 |
+
current_frame = get_video_frame(filename, frame_num
|
635 |
+
)
|
636 |
+
else:
|
637 |
+
current_frame = get_image_frame(filename)
|
638 |
+
if current_frame is None or mask_engine is None:
|
639 |
+
return None
|
640 |
+
if mask_engine == "Clip2Seg":
|
641 |
+
mask_engine = "mask_clip2seg"
|
642 |
+
if clip_text is None or len(clip_text) < 1:
|
643 |
+
mask_engine = None
|
644 |
+
elif mask_engine == "DFL XSeg":
|
645 |
+
mask_engine = "mask_xseg"
|
646 |
+
options = ProcessOptions(get_processing_plugins(mask_engine), roop.globals.distance_threshold, roop.globals.blend_ratio,
|
647 |
+
"all", 0, clip_text, None, 0, 128, False, False, True)
|
648 |
+
|
649 |
+
current_frame = live_swap(current_frame, options)
|
650 |
+
return util.convert_to_gradio(current_frame)
|
651 |
+
|
652 |
+
|
653 |
+
def on_clear_input_faces():
|
654 |
+
ui.globals.ui_input_thumbs.clear()
|
655 |
+
roop.globals.INPUT_FACESETS.clear()
|
656 |
+
return ui.globals.ui_input_thumbs
|
657 |
+
|
658 |
+
def on_clear_destfiles():
|
659 |
+
roop.globals.TARGET_FACES.clear()
|
660 |
+
ui.globals.ui_target_thumbs.clear()
|
661 |
+
return ui.globals.ui_target_thumbs, gr.Dropdown(value="First found")
|
662 |
+
|
663 |
+
|
664 |
+
def index_of_no_face_action(dropdown_text):
|
665 |
+
global no_face_choices
|
666 |
+
|
667 |
+
return no_face_choices.index(dropdown_text)
|
668 |
+
|
669 |
+
def translate_swap_mode(dropdown_text):
|
670 |
+
if dropdown_text == "Selected face":
|
671 |
+
return "selected"
|
672 |
+
elif dropdown_text == "First found":
|
673 |
+
return "first"
|
674 |
+
elif dropdown_text == "All input faces":
|
675 |
+
return "all_input"
|
676 |
+
elif dropdown_text == "All female":
|
677 |
+
return "all_female"
|
678 |
+
elif dropdown_text == "All male":
|
679 |
+
return "all_male"
|
680 |
+
|
681 |
+
return "all"
|
682 |
+
|
683 |
+
|
684 |
+
def start_swap( output_method, enhancer, detection, keep_frames, wait_after_extraction, skip_audio, face_distance, blend_ratio,
|
685 |
+
selected_mask_engine, clip_text, processing_method, no_face_action, vr_mode, autorotate, restore_original_mouth, num_swap_steps, upsample, imagemask, progress=gr.Progress()):
|
686 |
+
from ui.main import prepare_environment
|
687 |
+
from roop.core import batch_process_regular
|
688 |
+
global is_processing, list_files_process
|
689 |
+
|
690 |
+
if list_files_process is None or len(list_files_process) <= 0:
|
691 |
+
return gr.Button(variant="primary"), None, None
|
692 |
+
|
693 |
+
if roop.globals.CFG.clear_output:
|
694 |
+
clean_dir(roop.globals.output_path)
|
695 |
+
|
696 |
+
if not util.is_installed("ffmpeg"):
|
697 |
+
msg = "ffmpeg is not installed! No video processing possible."
|
698 |
+
gr.Warning(msg)
|
699 |
+
|
700 |
+
prepare_environment()
|
701 |
+
|
702 |
+
roop.globals.selected_enhancer = enhancer
|
703 |
+
roop.globals.target_path = None
|
704 |
+
roop.globals.distance_threshold = face_distance
|
705 |
+
roop.globals.blend_ratio = blend_ratio
|
706 |
+
roop.globals.keep_frames = keep_frames
|
707 |
+
roop.globals.wait_after_extraction = wait_after_extraction
|
708 |
+
roop.globals.skip_audio = skip_audio
|
709 |
+
roop.globals.face_swap_mode = translate_swap_mode(detection)
|
710 |
+
roop.globals.no_face_action = index_of_no_face_action(no_face_action)
|
711 |
+
roop.globals.vr_mode = vr_mode
|
712 |
+
roop.globals.autorotate_faces = autorotate
|
713 |
+
roop.globals.subsample_size = int(upsample[:3])
|
714 |
+
mask_engine = map_mask_engine(selected_mask_engine, clip_text)
|
715 |
+
|
716 |
+
if roop.globals.face_swap_mode == 'selected':
|
717 |
+
if len(roop.globals.TARGET_FACES) < 1:
|
718 |
+
gr.Error('No Target Face selected!')
|
719 |
+
return gr.Button(variant="primary"), None, None
|
720 |
+
|
721 |
+
is_processing = True
|
722 |
+
yield gr.Button(variant="secondary", interactive=False), gr.Button(variant="primary", interactive=True), None
|
723 |
+
roop.globals.execution_threads = roop.globals.CFG.max_threads
|
724 |
+
roop.globals.video_encoder = roop.globals.CFG.output_video_codec
|
725 |
+
roop.globals.video_quality = roop.globals.CFG.video_quality
|
726 |
+
roop.globals.max_memory = roop.globals.CFG.memory_limit if roop.globals.CFG.memory_limit > 0 else None
|
727 |
+
|
728 |
+
batch_process_regular(output_method, list_files_process, mask_engine, clip_text, processing_method == "In-Memory processing", imagemask, restore_original_mouth, num_swap_steps, progress, SELECTED_INPUT_FACE_INDEX)
|
729 |
+
is_processing = False
|
730 |
+
outdir = pathlib.Path(roop.globals.output_path)
|
731 |
+
outfiles = [str(item) for item in outdir.rglob("*") if item.is_file()]
|
732 |
+
if len(outfiles) > 0:
|
733 |
+
yield gr.Button(variant="primary", interactive=True),gr.Button(variant="secondary", interactive=False),gr.Files(value=outfiles)
|
734 |
+
else:
|
735 |
+
yield gr.Button(variant="primary", interactive=True),gr.Button(variant="secondary", interactive=False),None
|
736 |
+
|
737 |
+
|
738 |
+
def stop_swap():
|
739 |
+
roop.globals.processing = False
|
740 |
+
gr.Info('Aborting processing - please wait for the remaining threads to be stopped')
|
741 |
+
return gr.Button(variant="primary", interactive=True),gr.Button(variant="secondary", interactive=False),None
|
742 |
+
|
743 |
+
|
744 |
+
def on_fps_changed(fps):
|
745 |
+
global selected_preview_index, list_files_process
|
746 |
+
|
747 |
+
if len(list_files_process) < 1 or list_files_process[selected_preview_index].endframe < 1:
|
748 |
+
return
|
749 |
+
list_files_process[selected_preview_index].fps = fps
|
750 |
+
|
751 |
+
|
752 |
+
def on_destfiles_changed(destfiles):
|
753 |
+
global selected_preview_index, list_files_process, current_video_fps
|
754 |
+
|
755 |
+
if destfiles is None or len(destfiles) < 1:
|
756 |
+
list_files_process.clear()
|
757 |
+
return gr.Slider(value=1, maximum=1, info='0:00:00'), ''
|
758 |
+
|
759 |
+
for f in destfiles:
|
760 |
+
list_files_process.append(ProcessEntry(f.name, 0,0, 0))
|
761 |
+
|
762 |
+
selected_preview_index = 0
|
763 |
+
idx = selected_preview_index
|
764 |
+
|
765 |
+
filename = list_files_process[idx].filename
|
766 |
+
|
767 |
+
if util.is_video(filename) or filename.lower().endswith('gif'):
|
768 |
+
total_frames = get_video_frame_total(filename)
|
769 |
+
if total_frames is None or total_frames < 1:
|
770 |
+
total_frames = 1
|
771 |
+
gr.Warning(f"Corrupted video {filename}, can't detect number of frames!")
|
772 |
+
else:
|
773 |
+
current_video_fps = util.detect_fps(filename)
|
774 |
+
else:
|
775 |
+
total_frames = 1
|
776 |
+
list_files_process[idx].endframe = total_frames
|
777 |
+
if total_frames > 1:
|
778 |
+
return gr.Slider(value=1, maximum=total_frames, info='0:00:00'), gen_processing_text(list_files_process[idx].startframe,list_files_process[idx].endframe)
|
779 |
+
return gr.Slider(value=1, maximum=total_frames, info='0:00:00'), ''
|
780 |
+
|
781 |
+
|
782 |
+
def on_destfiles_selected(evt: gr.SelectData):
|
783 |
+
global selected_preview_index, list_files_process, current_video_fps
|
784 |
+
|
785 |
+
if evt is not None:
|
786 |
+
selected_preview_index = evt.index
|
787 |
+
idx = selected_preview_index
|
788 |
+
filename = list_files_process[idx].filename
|
789 |
+
fps = list_files_process[idx].fps
|
790 |
+
if util.is_video(filename) or filename.lower().endswith('gif'):
|
791 |
+
total_frames = get_video_frame_total(filename)
|
792 |
+
current_video_fps = util.detect_fps(filename)
|
793 |
+
if list_files_process[idx].endframe == 0:
|
794 |
+
list_files_process[idx].endframe = total_frames
|
795 |
+
else:
|
796 |
+
total_frames = 1
|
797 |
+
|
798 |
+
if total_frames > 1:
|
799 |
+
return gr.Slider(value=list_files_process[idx].startframe, maximum=total_frames, info='0:00:00'), gen_processing_text(list_files_process[idx].startframe,list_files_process[idx].endframe), fps
|
800 |
+
return gr.Slider(value=1, maximum=total_frames, info='0:00:00'), gen_processing_text(0,0), fps
|
801 |
+
|
802 |
+
|
803 |
+
def on_resultfiles_selected(evt: gr.SelectData, files):
|
804 |
+
selected_index = evt.index
|
805 |
+
filename = files[selected_index].name
|
806 |
+
return display_output(filename)
|
807 |
+
|
808 |
+
def on_resultfiles_finished(files):
|
809 |
+
selected_index = 0
|
810 |
+
if files is None or len(files) < 1:
|
811 |
+
return None, None
|
812 |
+
|
813 |
+
filename = files[selected_index].name
|
814 |
+
return display_output(filename)
|
815 |
+
|
816 |
+
|
817 |
+
def get_gradio_output_format():
|
818 |
+
if roop.globals.CFG.output_image_format == "jpg":
|
819 |
+
return "jpeg"
|
820 |
+
return roop.globals.CFG.output_image_format
|
821 |
+
|
822 |
+
|
823 |
+
def display_output(filename):
|
824 |
+
if util.is_video(filename) and roop.globals.CFG.output_show_video:
|
825 |
+
return gr.Image(visible=False), gr.Video(visible=True, value=filename)
|
826 |
+
else:
|
827 |
+
if util.is_video(filename) or filename.lower().endswith('gif'):
|
828 |
+
current_frame = get_video_frame(filename)
|
829 |
+
else:
|
830 |
+
current_frame = get_image_frame(filename)
|
831 |
+
return gr.Image(visible=True, value=util.convert_to_gradio(current_frame)), gr.Video(visible=False)
|
ui/tabs/livecam_tab.py
ADDED
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import roop.globals
|
3 |
+
import ui.globals
|
4 |
+
|
5 |
+
|
6 |
+
camera_frame = None
|
7 |
+
|
8 |
+
def livecam_tab():
|
9 |
+
with gr.Tab("🎥 Live Cam"):
|
10 |
+
with gr.Row(variant='panel'):
|
11 |
+
gr.Markdown("""
|
12 |
+
This feature will allow you to use your physical webcam and apply the selected faces to the stream.
|
13 |
+
You can also forward the stream to a virtual camera, which can be used in video calls or streaming software.<br />
|
14 |
+
Supported are: v4l2loopback (linux), OBS Virtual Camera (macOS/Windows) and unitycapture (Windows).<br />
|
15 |
+
**Please note:** to change the face or any other settings you need to stop and restart a running live cam.
|
16 |
+
""")
|
17 |
+
|
18 |
+
with gr.Row(variant='panel'):
|
19 |
+
with gr.Column():
|
20 |
+
bt_start = gr.Button("▶ Start", variant='primary')
|
21 |
+
with gr.Column():
|
22 |
+
bt_stop = gr.Button("⏹ Stop", variant='secondary', interactive=False)
|
23 |
+
with gr.Column():
|
24 |
+
camera_num = gr.Slider(0, 8, value=0, label="Camera Number", step=1.0, interactive=True)
|
25 |
+
cb_obs = gr.Checkbox(label="Forward stream to virtual camera", interactive=True)
|
26 |
+
with gr.Column():
|
27 |
+
dd_reso = gr.Dropdown(choices=["640x480","1280x720", "1920x1080"], value="1280x720", label="Fake Camera Resolution", interactive=True)
|
28 |
+
cb_xseg = gr.Checkbox(label="Use DFL Xseg masking", interactive=True, value=True)
|
29 |
+
cb_mouthrestore = gr.Checkbox(label="Restore original mouth area", interactive=True, value=False)
|
30 |
+
|
31 |
+
with gr.Row():
|
32 |
+
fake_cam_image = gr.Image(label='Fake Camera Output', interactive=False, format="jpeg")
|
33 |
+
|
34 |
+
start_event = bt_start.click(fn=start_cam, inputs=[cb_obs, cb_xseg, cb_mouthrestore, camera_num, dd_reso, ui.globals.ui_selected_enhancer, ui.globals.ui_blend_ratio, ui.globals.ui_upscale],outputs=[bt_start, bt_stop,fake_cam_image])
|
35 |
+
bt_stop.click(fn=stop_swap, cancels=[start_event], outputs=[bt_start, bt_stop], queue=False)
|
36 |
+
|
37 |
+
|
38 |
+
def start_cam(stream_to_obs, use_xseg, use_mouthrestore, cam, reso, enhancer, blend_ratio, upscale):
|
39 |
+
from roop.virtualcam import start_virtual_cam
|
40 |
+
from roop.utilities import convert_to_gradio
|
41 |
+
|
42 |
+
roop.globals.selected_enhancer = enhancer
|
43 |
+
roop.globals.blend_ratio = blend_ratio
|
44 |
+
roop.globals.subsample_size = int(upscale[:3])
|
45 |
+
start_virtual_cam(stream_to_obs, use_xseg, use_mouthrestore, cam, reso)
|
46 |
+
while True:
|
47 |
+
yield gr.Button(interactive=False), gr.Button(interactive=True), convert_to_gradio(ui.globals.ui_camera_frame)
|
48 |
+
|
49 |
+
|
50 |
+
def stop_swap():
|
51 |
+
from roop.virtualcam import stop_virtual_cam
|
52 |
+
stop_virtual_cam()
|
53 |
+
return gr.Button(interactive=True), gr.Button(interactive=False)
|
54 |
+
|
55 |
+
|
56 |
+
|
57 |
+
|
ui/tabs/settings_tab.py
ADDED
@@ -0,0 +1,129 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import shutil
|
2 |
+
import os
|
3 |
+
import gradio as gr
|
4 |
+
import roop.globals
|
5 |
+
import ui.globals
|
6 |
+
from roop.utilities import clean_dir
|
7 |
+
|
8 |
+
available_themes = ["Default", "gradio/glass", "gradio/monochrome", "gradio/seafoam", "gradio/soft", "gstaff/xkcd", "freddyaboulton/dracula_revamped", "ysharma/steampunk"]
|
9 |
+
image_formats = ['jpg','png', 'webp']
|
10 |
+
video_formats = ['avi','mkv', 'mp4', 'webm']
|
11 |
+
video_codecs = ['libx264', 'libx265', 'libvpx-vp9', 'h264_nvenc', 'hevc_nvenc']
|
12 |
+
providerlist = None
|
13 |
+
|
14 |
+
settings_controls = []
|
15 |
+
|
16 |
+
def settings_tab():
|
17 |
+
from roop.core import suggest_execution_providers
|
18 |
+
global providerlist
|
19 |
+
|
20 |
+
providerlist = suggest_execution_providers()
|
21 |
+
with gr.Tab("⚙ Settings"):
|
22 |
+
with gr.Row():
|
23 |
+
with gr.Column():
|
24 |
+
themes = gr.Dropdown(available_themes, label="Theme", info="Change needs complete restart", value=roop.globals.CFG.selected_theme)
|
25 |
+
with gr.Column():
|
26 |
+
settings_controls.append(gr.Checkbox(label="Public Server", value=roop.globals.CFG.server_share, elem_id='server_share', interactive=True))
|
27 |
+
settings_controls.append(gr.Checkbox(label='Clear output folder before each run', value=roop.globals.CFG.clear_output, elem_id='clear_output', interactive=True))
|
28 |
+
output_template = gr.Textbox(label="Filename Output Template", info="(file extension is added automatically)", lines=1, placeholder='{file}_{time}', value=roop.globals.CFG.output_template)
|
29 |
+
with gr.Column():
|
30 |
+
input_server_name = gr.Textbox(label="Server Name", lines=1, info="Leave blank to run locally", value=roop.globals.CFG.server_name)
|
31 |
+
with gr.Column():
|
32 |
+
input_server_port = gr.Number(label="Server Port", precision=0, info="Leave at 0 to use default", value=roop.globals.CFG.server_port)
|
33 |
+
with gr.Row():
|
34 |
+
with gr.Column():
|
35 |
+
settings_controls.append(gr.Dropdown(providerlist, label="Provider", value=roop.globals.CFG.provider, elem_id='provider', interactive=True))
|
36 |
+
chk_det_size = gr.Checkbox(label="Use default Det-Size", value=True, elem_id='default_det_size', interactive=True)
|
37 |
+
settings_controls.append(gr.Checkbox(label="Force CPU for Face Analyser", value=roop.globals.CFG.force_cpu, elem_id='force_cpu', interactive=True))
|
38 |
+
max_threads = gr.Slider(1, 32, value=roop.globals.CFG.max_threads, label="Max. Number of Threads", info='default: 3', step=1.0, interactive=True)
|
39 |
+
with gr.Column():
|
40 |
+
memory_limit = gr.Slider(0, 128, value=roop.globals.CFG.memory_limit, label="Max. Memory to use (Gb)", info='0 meaning no limit', step=1.0, interactive=True)
|
41 |
+
settings_controls.append(gr.Dropdown(image_formats, label="Image Output Format", info='default: png', value=roop.globals.CFG.output_image_format, elem_id='output_image_format', interactive=True))
|
42 |
+
with gr.Column():
|
43 |
+
settings_controls.append(gr.Dropdown(video_codecs, label="Video Codec", info='default: libx264', value=roop.globals.CFG.output_video_codec, elem_id='output_video_codec', interactive=True))
|
44 |
+
settings_controls.append(gr.Dropdown(video_formats, label="Video Output Format", info='default: mp4', value=roop.globals.CFG.output_video_format, elem_id='output_video_format', interactive=True))
|
45 |
+
video_quality = gr.Slider(0, 100, value=roop.globals.CFG.video_quality, label="Video Quality (crf)", info='default: 14', step=1.0, interactive=True)
|
46 |
+
with gr.Column():
|
47 |
+
with gr.Group():
|
48 |
+
settings_controls.append(gr.Checkbox(label='Use OS temp folder', value=roop.globals.CFG.use_os_temp_folder, elem_id='use_os_temp_folder', interactive=True))
|
49 |
+
settings_controls.append(gr.Checkbox(label='Show video in browser (re-encodes output)', value=roop.globals.CFG.output_show_video, elem_id='output_show_video', interactive=True))
|
50 |
+
button_apply_restart = gr.Button("Restart Server", variant='primary')
|
51 |
+
button_clean_temp = gr.Button("Clean temp folder")
|
52 |
+
button_apply_settings = gr.Button("Apply Settings")
|
53 |
+
|
54 |
+
chk_det_size.select(fn=on_option_changed)
|
55 |
+
|
56 |
+
# Settings
|
57 |
+
for s in settings_controls:
|
58 |
+
s.select(fn=on_settings_changed)
|
59 |
+
max_threads.input(fn=lambda a,b='max_threads':on_settings_changed_misc(a,b), inputs=[max_threads])
|
60 |
+
memory_limit.input(fn=lambda a,b='memory_limit':on_settings_changed_misc(a,b), inputs=[memory_limit])
|
61 |
+
video_quality.input(fn=lambda a,b='video_quality':on_settings_changed_misc(a,b), inputs=[video_quality])
|
62 |
+
|
63 |
+
# button_clean_temp.click(fn=clean_temp, outputs=[bt_srcfiles, input_faces, target_faces, bt_destfiles])
|
64 |
+
button_clean_temp.click(fn=clean_temp)
|
65 |
+
button_apply_settings.click(apply_settings, inputs=[themes, input_server_name, input_server_port, output_template])
|
66 |
+
button_apply_restart.click(restart)
|
67 |
+
|
68 |
+
|
69 |
+
def on_option_changed(evt: gr.SelectData):
|
70 |
+
attribname = evt.target.elem_id
|
71 |
+
if isinstance(evt.target, gr.Checkbox):
|
72 |
+
if hasattr(roop.globals, attribname):
|
73 |
+
setattr(roop.globals, attribname, evt.selected)
|
74 |
+
return
|
75 |
+
elif isinstance(evt.target, gr.Dropdown):
|
76 |
+
if hasattr(roop.globals, attribname):
|
77 |
+
setattr(roop.globals, attribname, evt.value)
|
78 |
+
return
|
79 |
+
raise gr.Error(f'Unhandled Setting for {evt.target}')
|
80 |
+
|
81 |
+
|
82 |
+
def on_settings_changed_misc(new_val, attribname):
|
83 |
+
if hasattr(roop.globals.CFG, attribname):
|
84 |
+
setattr(roop.globals.CFG, attribname, new_val)
|
85 |
+
else:
|
86 |
+
print("Didn't find attrib!")
|
87 |
+
|
88 |
+
|
89 |
+
|
90 |
+
def on_settings_changed(evt: gr.SelectData):
|
91 |
+
attribname = evt.target.elem_id
|
92 |
+
if isinstance(evt.target, gr.Checkbox):
|
93 |
+
if hasattr(roop.globals.CFG, attribname):
|
94 |
+
setattr(roop.globals.CFG, attribname, evt.selected)
|
95 |
+
return
|
96 |
+
elif isinstance(evt.target, gr.Dropdown):
|
97 |
+
if hasattr(roop.globals.CFG, attribname):
|
98 |
+
setattr(roop.globals.CFG, attribname, evt.value)
|
99 |
+
return
|
100 |
+
|
101 |
+
raise gr.Error(f'Unhandled Setting for {evt.target}')
|
102 |
+
|
103 |
+
def clean_temp():
|
104 |
+
from ui.main import prepare_environment
|
105 |
+
|
106 |
+
ui.globals.ui_input_thumbs.clear()
|
107 |
+
roop.globals.INPUT_FACESETS.clear()
|
108 |
+
roop.globals.TARGET_FACES.clear()
|
109 |
+
ui.globals.ui_target_thumbs = []
|
110 |
+
if not roop.globals.CFG.use_os_temp_folder:
|
111 |
+
clean_dir(os.environ["TEMP"])
|
112 |
+
prepare_environment()
|
113 |
+
gr.Info('Temp Files removed')
|
114 |
+
return None,None,None,None
|
115 |
+
|
116 |
+
|
117 |
+
def apply_settings(themes, input_server_name, input_server_port, output_template):
|
118 |
+
from ui.main import show_msg
|
119 |
+
|
120 |
+
roop.globals.CFG.selected_theme = themes
|
121 |
+
roop.globals.CFG.server_name = input_server_name
|
122 |
+
roop.globals.CFG.server_port = input_server_port
|
123 |
+
roop.globals.CFG.output_template = output_template
|
124 |
+
roop.globals.CFG.save()
|
125 |
+
show_msg('Settings saved')
|
126 |
+
|
127 |
+
|
128 |
+
def restart():
|
129 |
+
ui.globals.ui_restart_server = True
|