|
import gradio as gr |
|
import logging |
|
from transformers import pipeline |
|
import torch |
|
import requests, json |
|
import os |
|
import io |
|
from IPython.display import Image, display, HTML |
|
from PIL import Image |
|
import base64 |
|
|
|
description = "Image Recognition & Generation" |
|
title = "This app allows users to upload an image, generation a caption of the image, then use that caption to generate a new image. Isn't it fun!" |
|
|
|
hf_api_key = os.environ['HF_API_KEY'] |
|
|
|
|
|
def get_completion(inputs, parameters=None, ENDPOINT_URL=""): |
|
headers = { |
|
"Authorization": f"Bearer {hf_api_key}", |
|
"Content-Type": "application/json" |
|
} |
|
data = { "inputs": inputs } |
|
if parameters is not None: |
|
data.update({"parameters": parameters}) |
|
response = requests.request("POST", |
|
ENDPOINT_URL, |
|
headers=headers, |
|
data=json.dumps(data)) |
|
return json.loads(response.content.decode("utf-8")) |
|
|
|
|
|
TTI_ENDPOINT = os.environ['HF_API_TTI_BASE'] |
|
|
|
ITT_ENDPOINT = os.environ['HF_API_ITT_BASE'] |
|
|
|
def image_to_base64_str(pil_image): |
|
byte_arr = io.BytesIO() |
|
pil_image.save(byte_arr, format='PNG') |
|
byte_arr = byte_arr.getvalue() |
|
return str(base64.b64encode(byte_arr).decode('utf-8')) |
|
|
|
def base64_to_pil(img_base64): |
|
base64_decoded = base64.b64decode(img_base64) |
|
byte_stream = io.BytesIO(base64_decoded) |
|
pil_image = Image.open(byte_stream) |
|
return pil_image |
|
|
|
def captioner(image): |
|
base64_image = image_to_base64_str(image) |
|
result = get_completion(base64_image, None, ITT_ENDPOINT) |
|
return result[0]['generated_text'] |
|
|
|
def generate(prompt): |
|
output = get_completion(prompt, None, TTI_ENDPOINT) |
|
result_image = base64_to_pil(output) |
|
return result_image |
|
|
|
def caption_and_generate(image): |
|
caption = captioner(image) |
|
image = generate(caption) |
|
return [caption, image] |
|
|
|
with gr.Blocks() as demo: |
|
gr.Markdown("# Describe-and-Generate game 🖍️") |
|
image_upload = gr.Image(label="Your first image",type="pil") |
|
btn_all = gr.Button("Caption and generate") |
|
caption = gr.Textbox(label="Generated caption") |
|
image_output = gr.Image(label="Generated Image") |
|
|
|
btn_all.click(fn=caption_and_generate, inputs=[image_upload], outputs=[caption, image_output]) |
|
|
|
|
|
gr.close_all() |
|
|
|
demo.launch(share=True) |