kcelia commited on
Commit
9c8c3ed
β€’
1 Parent(s): 9e80428

chore: update design in version 6

Browse files
Files changed (1) hide show
  1. app.py +12 -13
app.py CHANGED
@@ -470,7 +470,6 @@ def reset_fn():
470
  submit_button: gr.update(value="Confirm Symptoms"),
471
  user_id_box: gr.update(visible=False, value=None, interactive=False),
472
  user_vect_box1: None,
473
- recap_symptoms_box: gr.update(visible=False, value=None),
474
  default_symptoms: gr.update(visible=True, value=None),
475
  disease_box: gr.update(visible=True, value=None),
476
  quant_vect_box: gr.update(visible=False, value=None, interactive=False),
@@ -581,9 +580,7 @@ if __name__ == "__main__":
581
  error_box1 = gr.Textbox(label="Error ❌", visible=False)
582
 
583
  # Default disease, picked from the dataframe
584
- gr.Markdown(
585
- "You can choose an **existing disease** and explore its associated symptoms."
586
- )
587
 
588
  with gr.Row():
589
  with gr.Column(scale=2):
@@ -683,11 +680,11 @@ if __name__ == "__main__":
683
  )
684
 
685
  with gr.TabItem("3. FHE execution", id=2):
 
686
  gr.Markdown("<span style='color:grey'>Server Side</span>")
687
- gr.Markdown("## Run the FHE evaluation")
688
  gr.Markdown(
689
  "Once the server receives the encrypted data, it can process and compute the output without ever decrypting the data just as it would on clear data.\n\n"
690
- "This server employs a logistic regression model that has been trained on this [data-set](https://github.com/anujdutt9/Disease-Prediction-from-Symptoms/tree/master/dataset)."
691
  )
692
 
693
  run_fhe_btn = gr.Button("Run the FHE evaluation πŸ‘†")
@@ -703,8 +700,10 @@ if __name__ == "__main__":
703
  )
704
 
705
  with gr.TabItem("4. Data Decryption", id=3):
 
706
  gr.Markdown("<span style='color:grey'>Client Side</span>")
707
- gr.Markdown("## Get the data from the <span style='color:grey'>Server Side</span>")
 
708
 
709
  error_box6 = gr.Textbox(label="Error ❌", visible=False)
710
 
@@ -722,11 +721,7 @@ if __name__ == "__main__":
722
  outputs=[srv_resp_retrieve_data_box, error_box6],
723
  )
724
 
725
- gr.Markdown("## Decrypt the output")
726
-
727
- recap_symptoms_box = gr.Textbox(
728
- label="Summary of chief complaints:", visible=False, max_lines=3
729
- )
730
 
731
  decrypt_target_btn = gr.Button(
732
  "Decrypt the output with the πŸ”’ private secret decryption key πŸ‘†"
@@ -739,6 +734,11 @@ if __name__ == "__main__":
739
  inputs=[user_id_box, user_vect_box1, *check_boxes],
740
  outputs=[decrypt_target_box, error_box7],
741
  )
 
 
 
 
 
742
 
743
  gen_key_btn.click(
744
  key_gen_fn,
@@ -773,7 +773,6 @@ if __name__ == "__main__":
773
  error_box7,
774
  disease_box,
775
  default_symptoms,
776
- recap_symptoms_box,
777
  user_id_box,
778
  key_len_box,
779
  key_box,
 
470
  submit_button: gr.update(value="Confirm Symptoms"),
471
  user_id_box: gr.update(visible=False, value=None, interactive=False),
472
  user_vect_box1: None,
 
473
  default_symptoms: gr.update(visible=True, value=None),
474
  disease_box: gr.update(visible=True, value=None),
475
  quant_vect_box: gr.update(visible=False, value=None, interactive=False),
 
580
  error_box1 = gr.Textbox(label="Error ❌", visible=False)
581
 
582
  # Default disease, picked from the dataframe
583
+ gr.Markdown("You can choose an **existing disease** and explore its associated symptoms.")
 
 
584
 
585
  with gr.Row():
586
  with gr.Column(scale=2):
 
680
  )
681
 
682
  with gr.TabItem("3. FHE execution", id=2):
683
+ gr.Markdown("## Step 3: Run the FHE evaluation")
684
  gr.Markdown("<span style='color:grey'>Server Side</span>")
 
685
  gr.Markdown(
686
  "Once the server receives the encrypted data, it can process and compute the output without ever decrypting the data just as it would on clear data.\n\n"
687
+ "This server employs a [logistic regression]() model that has been trained on this [data-set](https://github.com/anujdutt9/Disease-Prediction-from-Symptoms/tree/master/dataset)."
688
  )
689
 
690
  run_fhe_btn = gr.Button("Run the FHE evaluation πŸ‘†")
 
700
  )
701
 
702
  with gr.TabItem("4. Data Decryption", id=3):
703
+ gr.Markdown("## Step 4: Decrypt the data")
704
  gr.Markdown("<span style='color:grey'>Client Side</span>")
705
+
706
+ gr.Markdown("### Get the data from the <span style='color:grey'>Server Side</span>")
707
 
708
  error_box6 = gr.Textbox(label="Error ❌", visible=False)
709
 
 
721
  outputs=[srv_resp_retrieve_data_box, error_box6],
722
  )
723
 
724
+ gr.Markdown("### Decrypt the output")
 
 
 
 
725
 
726
  decrypt_target_btn = gr.Button(
727
  "Decrypt the output with the πŸ”’ private secret decryption key πŸ‘†"
 
734
  inputs=[user_id_box, user_vect_box1, *check_boxes],
735
  outputs=[decrypt_target_box, error_box7],
736
  )
737
+
738
+ gr.Markdown(
739
+ """The app was built with [Concrete ML](https://github.com/zama-ai/concrete-ml), a Privacy-Preserving Machine Learning (PPML) open-source set of tools by Zama.
740
+ Try it yourself and don't forget to star on [Github](https://github.com/zama-ai/concrete-ml) ⭐.
741
+ """)
742
 
743
  gen_key_btn.click(
744
  key_gen_fn,
 
773
  error_box7,
774
  disease_box,
775
  default_symptoms,
 
776
  user_id_box,
777
  key_len_box,
778
  key_box,