romanbredehoft-zama
commited on
Commit
β’
0e9fc02
1
Parent(s):
04d1e2c
Add prediction message
Browse files- app.py +1 -1
- backend.py +3 -2
- development.py +8 -0
app.py
CHANGED
@@ -142,7 +142,7 @@ with demo:
|
|
142 |
decrypt_button = gr.Button("Decrypt the output")
|
143 |
|
144 |
prediction_output = gr.Textbox(
|
145 |
-
label="
|
146 |
)
|
147 |
|
148 |
# Button generate the keys
|
|
|
142 |
decrypt_button = gr.Button("Decrypt the output")
|
143 |
|
144 |
prediction_output = gr.Textbox(
|
145 |
+
label="Prediction", max_lines=1, interactive=False
|
146 |
)
|
147 |
|
148 |
# Button generate the keys
|
backend.py
CHANGED
@@ -419,6 +419,7 @@ def decrypt_output(client_id):
|
|
419 |
output_proba = client.deserialize_decrypt_dequantize(encrypted_output_proba)
|
420 |
|
421 |
# Determine the predicted class
|
422 |
-
output = numpy.argmax(output_proba, axis=1)
|
423 |
|
424 |
-
|
|
|
|
419 |
output_proba = client.deserialize_decrypt_dequantize(encrypted_output_proba)
|
420 |
|
421 |
# Determine the predicted class
|
422 |
+
output = numpy.argmax(output_proba, axis=1).squeeze()
|
423 |
|
424 |
+
# A "0" output means approving the credit card has low risk, while "1" is high risk
|
425 |
+
return "Credit card has been approved β
" if output == 0 else "Credit card has been rejected β"
|
development.py
CHANGED
@@ -24,6 +24,14 @@ def get_processed_multi_inputs(data):
|
|
24 |
|
25 |
print("Load and pre-process the data")
|
26 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
data = pandas.read_csv(DATA_PATH, encoding="utf-8")
|
28 |
|
29 |
# Define input and target data
|
|
|
24 |
|
25 |
print("Load and pre-process the data")
|
26 |
|
27 |
+
# Original data set can be found here :
|
28 |
+
# https://www.kaggle.com/datasets/rikdifos/credit-card-approval-prediction/data
|
29 |
+
# It then has been cleaned using the following notebook :
|
30 |
+
# https://www.kaggle.com/code/samuelcortinhas/credit-cards-data-cleaning
|
31 |
+
# A few additional pre-processing steps has bee applied to this data set as well :
|
32 |
+
# - "ID" column has been removed
|
33 |
+
# - "Total_income" values have been multiplied by 0.14 to make its median value match France's
|
34 |
+
# annual salary one from 2023 (in euros)
|
35 |
data = pandas.read_csv(DATA_PATH, encoding="utf-8")
|
36 |
|
37 |
# Define input and target data
|