Spaces:
Sleeping
Sleeping
dump log reg model
Browse files- models/logistic_regression.pkl +0 -0
- src/classifier.ipynb +6 -20
models/logistic_regression.pkl
ADDED
Binary file (132 kB). View file
|
|
src/classifier.ipynb
CHANGED
@@ -591,32 +591,18 @@
|
|
591 |
},
|
592 |
{
|
593 |
"cell_type": "code",
|
594 |
-
"execution_count":
|
595 |
"metadata": {},
|
596 |
-
"outputs": [
|
597 |
-
{
|
598 |
-
"data": {
|
599 |
-
"text/html": [
|
600 |
-
"<style>#sk-container-id-1 {color: black;}#sk-container-id-1 pre{padding: 0;}#sk-container-id-1 div.sk-toggleable {background-color: white;}#sk-container-id-1 label.sk-toggleable__label {cursor: pointer;display: block;width: 100%;margin-bottom: 0;padding: 0.3em;box-sizing: border-box;text-align: center;}#sk-container-id-1 label.sk-toggleable__label-arrow:before {content: \"▸\";float: left;margin-right: 0.25em;color: #696969;}#sk-container-id-1 label.sk-toggleable__label-arrow:hover:before {color: black;}#sk-container-id-1 div.sk-estimator:hover label.sk-toggleable__label-arrow:before {color: black;}#sk-container-id-1 div.sk-toggleable__content {max-height: 0;max-width: 0;overflow: hidden;text-align: left;background-color: #f0f8ff;}#sk-container-id-1 div.sk-toggleable__content pre {margin: 0.2em;color: black;border-radius: 0.25em;background-color: #f0f8ff;}#sk-container-id-1 input.sk-toggleable__control:checked~div.sk-toggleable__content {max-height: 200px;max-width: 100%;overflow: auto;}#sk-container-id-1 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {content: \"▾\";}#sk-container-id-1 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-1 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-1 input.sk-hidden--visually {border: 0;clip: rect(1px 1px 1px 1px);clip: rect(1px, 1px, 1px, 1px);height: 1px;margin: -1px;overflow: hidden;padding: 0;position: absolute;width: 1px;}#sk-container-id-1 div.sk-estimator {font-family: monospace;background-color: #f0f8ff;border: 1px dotted black;border-radius: 0.25em;box-sizing: border-box;margin-bottom: 0.5em;}#sk-container-id-1 div.sk-estimator:hover {background-color: #d4ebff;}#sk-container-id-1 div.sk-parallel-item::after {content: \"\";width: 100%;border-bottom: 1px solid gray;flex-grow: 1;}#sk-container-id-1 div.sk-label:hover label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-1 div.sk-serial::before {content: \"\";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: 0;}#sk-container-id-1 div.sk-serial {display: flex;flex-direction: column;align-items: center;background-color: white;padding-right: 0.2em;padding-left: 0.2em;position: relative;}#sk-container-id-1 div.sk-item {position: relative;z-index: 1;}#sk-container-id-1 div.sk-parallel {display: flex;align-items: stretch;justify-content: center;background-color: white;position: relative;}#sk-container-id-1 div.sk-item::before, #sk-container-id-1 div.sk-parallel-item::before {content: \"\";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: -1;}#sk-container-id-1 div.sk-parallel-item {display: flex;flex-direction: column;z-index: 1;position: relative;background-color: white;}#sk-container-id-1 div.sk-parallel-item:first-child::after {align-self: flex-end;width: 50%;}#sk-container-id-1 div.sk-parallel-item:last-child::after {align-self: flex-start;width: 50%;}#sk-container-id-1 div.sk-parallel-item:only-child::after {width: 0;}#sk-container-id-1 div.sk-dashed-wrapped {border: 1px dashed gray;margin: 0 0.4em 0.5em 0.4em;box-sizing: border-box;padding-bottom: 0.4em;background-color: white;}#sk-container-id-1 div.sk-label label {font-family: monospace;font-weight: bold;display: inline-block;line-height: 1.2em;}#sk-container-id-1 div.sk-label-container {text-align: center;}#sk-container-id-1 div.sk-container {/* jupyter's `normalize.less` sets `[hidden] { display: none; }` but bootstrap.min.css set `[hidden] { display: none !important; }` so we also need the `!important` here to be able to override the default hidden behavior on the sphinx rendered scikit-learn.org. See: https://github.com/scikit-learn/scikit-learn/issues/21755 */display: inline-block !important;position: relative;}#sk-container-id-1 div.sk-text-repr-fallback {display: none;}</style><div id=\"sk-container-id-1\" class=\"sk-top-container\"><div class=\"sk-text-repr-fallback\"><pre>LogisticRegression(class_weight='balanced', max_iter=1000,\n",
|
601 |
-
" multi_class='multinomial', random_state=2024)</pre><b>In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. <br />On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.</b></div><div class=\"sk-container\" hidden><div class=\"sk-item\"><div class=\"sk-estimator sk-toggleable\"><input class=\"sk-toggleable__control sk-hidden--visually\" id=\"sk-estimator-id-1\" type=\"checkbox\" checked><label for=\"sk-estimator-id-1\" class=\"sk-toggleable__label sk-toggleable__label-arrow\">LogisticRegression</label><div class=\"sk-toggleable__content\"><pre>LogisticRegression(class_weight='balanced', max_iter=1000,\n",
|
602 |
-
" multi_class='multinomial', random_state=2024)</pre></div></div></div></div></div>"
|
603 |
-
],
|
604 |
-
"text/plain": [
|
605 |
-
"LogisticRegression(class_weight='balanced', max_iter=1000,\n",
|
606 |
-
" multi_class='multinomial', random_state=2024)"
|
607 |
-
]
|
608 |
-
},
|
609 |
-
"execution_count": 4,
|
610 |
-
"metadata": {},
|
611 |
-
"output_type": "execute_result"
|
612 |
-
}
|
613 |
-
],
|
614 |
"source": [
|
615 |
"lr_model = LogisticRegression(multi_class='multinomial', \n",
|
616 |
" class_weight=\"balanced\", \n",
|
617 |
" max_iter=1000, \n",
|
618 |
" random_state=2024)\n",
|
619 |
-
"lr_model.fit(X_train, y_train)"
|
|
|
|
|
|
|
620 |
]
|
621 |
},
|
622 |
{
|
|
|
591 |
},
|
592 |
{
|
593 |
"cell_type": "code",
|
594 |
+
"execution_count": 13,
|
595 |
"metadata": {},
|
596 |
+
"outputs": [],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
597 |
"source": [
|
598 |
"lr_model = LogisticRegression(multi_class='multinomial', \n",
|
599 |
" class_weight=\"balanced\", \n",
|
600 |
" max_iter=1000, \n",
|
601 |
" random_state=2024)\n",
|
602 |
+
"lr_model.fit(X_train, y_train)\n",
|
603 |
+
"\n",
|
604 |
+
"with open('../models/logistic_regression.pkl', 'wb') as file:\n",
|
605 |
+
" pickle.dump(lr_model, file)"
|
606 |
]
|
607 |
},
|
608 |
{
|