Spaces:
Sleeping
Sleeping
zahraanaji
commited on
Commit
•
80f6d5f
1
Parent(s):
7477fad
Upload 2_rag_skeleton.py
Browse files- 2_rag_skeleton.py +65 -0
2_rag_skeleton.py
ADDED
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from langchain_openai import ChatOpenAI
|
2 |
+
from langchain_community.embeddings import HuggingFaceEmbeddings
|
3 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
4 |
+
from langchain_community.vectorstores import Chroma
|
5 |
+
from langchain_community.document_loaders import PyPDFLoader
|
6 |
+
from langchain.chains import ConversationalRetrievalChain
|
7 |
+
from langchain_community.chat_message_histories import ChatMessageHistory
|
8 |
+
from langchain.memory import ConversationBufferMemory
|
9 |
+
from langchain_core.prompts import PromptTemplate
|
10 |
+
|
11 |
+
# Access the OpenAI API key from the environment
|
12 |
+
open_ai_key = os.getenv("OPENAI_API_KEY")
|
13 |
+
|
14 |
+
llm = ChatOpenAI(api_key=open_ai_key)
|
15 |
+
|
16 |
+
template = """Use the following pieces of information to answer the user's question.
|
17 |
+
If you don't know the answer, just say that you don't know, don't try to make up an answer.
|
18 |
+
|
19 |
+
Context: {context}
|
20 |
+
Question: {question}
|
21 |
+
|
22 |
+
Only return the helpful answer below and nothing else.
|
23 |
+
Helpful answer:
|
24 |
+
"""
|
25 |
+
|
26 |
+
prompt = PromptTemplate(template=template, input_variables=["context", "question"])
|
27 |
+
|
28 |
+
|
29 |
+
# Load and process the PDF
|
30 |
+
loader = PyPDFLoader(pdf_file.name)
|
31 |
+
pdf_data = loader.load()
|
32 |
+
|
33 |
+
# Split the text into chunks
|
34 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
|
35 |
+
docs = text_splitter.split_documents(pdf_data)
|
36 |
+
|
37 |
+
# Create a Chroma vector store
|
38 |
+
embeddings = HuggingFaceEmbeddings(model_name="embaas/sentence-transformers-multilingual-e5-base")
|
39 |
+
db = Chroma.from_documents(docs, embeddings)
|
40 |
+
|
41 |
+
# Initialize message history for conversation
|
42 |
+
message_history = ChatMessageHistory()
|
43 |
+
|
44 |
+
# Memory for conversational context
|
45 |
+
memory = ConversationBufferMemory(
|
46 |
+
memory_key="chat_history",
|
47 |
+
output_key="answer",
|
48 |
+
chat_memory=message_history,
|
49 |
+
return_messages=True,
|
50 |
+
)
|
51 |
+
|
52 |
+
# Create a chain that uses the Chroma vector store
|
53 |
+
chain = ConversationalRetrievalChain.from_llm(
|
54 |
+
llm=llm,
|
55 |
+
chain_type="stuff",
|
56 |
+
retriever=db.as_retriever(),
|
57 |
+
memory=memory,
|
58 |
+
return_source_documents=False,
|
59 |
+
combine_docs_chain_kwargs={'prompt': prompt}
|
60 |
+
)
|
61 |
+
|
62 |
+
# Process the question
|
63 |
+
res = chain({"question": question})
|
64 |
+
answer = res["answer"]
|
65 |
+
|