Delete app.py
Browse files
    	
        app.py
    DELETED
    
    | 
         @@ -1,76 +0,0 @@ 
     | 
|
| 1 | 
         
            -
            from Functions.write_stream import user_data
         
     | 
| 2 | 
         
            -
            import streamlit as st
         
     | 
| 3 | 
         
            -
            from llama_index.core import SimpleDirectoryReader, VectorStoreIndex, ServiceContext
         
     | 
| 4 | 
         
            -
            from llama_index.llms.llama_cpp import LlamaCPP
         
     | 
| 5 | 
         
            -
            from llama_index.llms.llama_cpp.llama_utils import messages_to_prompt, completion_to_prompt
         
     | 
| 6 | 
         
            -
            from langchain.embeddings.huggingface import HuggingFaceEmbeddings
         
     | 
| 7 | 
         
            -
             
     | 
| 8 | 
         
            -
             
     | 
| 9 | 
         
            -
            directory = "Knowledge Base/"
         
     | 
| 10 | 
         
            -
             
     | 
| 11 | 
         
            -
             
     | 
| 12 | 
         
            -
            documents = SimpleDirectoryReader(directory).load_data()
         
     | 
| 13 | 
         
            -
             
     | 
| 14 | 
         
            -
            llm = LlamaCPP(
         
     | 
| 15 | 
         
            -
            # You can pass in the URL to a GGML model to download it automatically
         
     | 
| 16 | 
         
            -
            model_url='https://huggingface.co/TheBloke/Mistral-7B-Instruct-v0.1-GGUF/resolve/main/mistral-7b-instruct-v0.1.Q2_K.gguf',
         
     | 
| 17 | 
         
            -
            # optionally, you can set the path to a pre-downloaded model instead of model_url
         
     | 
| 18 | 
         
            -
            model_path=None,
         
     | 
| 19 | 
         
            -
            temperature=0.75,
         
     | 
| 20 | 
         
            -
            max_new_tokens=256,
         
     | 
| 21 | 
         
            -
            # llama2 has a context window of 4096 tokens, but we set it lower to allow for some wiggle room
         
     | 
| 22 | 
         
            -
            context_window=3900,
         
     | 
| 23 | 
         
            -
            messages_to_prompt=messages_to_prompt,
         
     | 
| 24 | 
         
            -
            completion_to_prompt=completion_to_prompt,
         
     | 
| 25 | 
         
            -
            verbose=True,
         
     | 
| 26 | 
         
            -
            )
         
     | 
| 27 | 
         
            -
            print("working -3")
         
     | 
| 28 | 
         
            -
             
     | 
| 29 | 
         
            -
            embed_model = HuggingFaceEmbeddings(model_name="thenlper/gte-large")
         
     | 
| 30 | 
         
            -
             
     | 
| 31 | 
         
            -
            print("working -2")
         
     | 
| 32 | 
         
            -
             
     | 
| 33 | 
         
            -
            service_context = ServiceContext.from_defaults(
         
     | 
| 34 | 
         
            -
                chunk_size= 256,
         
     | 
| 35 | 
         
            -
                llm=llm,
         
     | 
| 36 | 
         
            -
                embed_model=embed_model
         
     | 
| 37 | 
         
            -
            )
         
     | 
| 38 | 
         
            -
            print("working -1")
         
     | 
| 39 | 
         
            -
             
     | 
| 40 | 
         
            -
            index = VectorStoreIndex.from_documents(documents, service_context=service_context, show_progress=True)
         
     | 
| 41 | 
         
            -
            print("working 0")
         
     | 
| 42 | 
         
            -
             
     | 
| 43 | 
         
            -
            query_engine = index.as_query_engine()
         
     | 
| 44 | 
         
            -
             
     | 
| 45 | 
         
            -
             
     | 
| 46 | 
         
            -
             
     | 
| 47 | 
         
            -
            ###############=============    USER INTERFACE (UI    )###############=============
         
     | 
| 48 | 
         
            -
             
     | 
| 49 | 
         
            -
             
     | 
| 50 | 
         
            -
            st.title("Wiki Bot")
         
     | 
| 51 | 
         
            -
             
     | 
| 52 | 
         
            -
            if "messages" not in st.session_state:
         
     | 
| 53 | 
         
            -
                st.session_state.messages = []
         
     | 
| 54 | 
         
            -
             
     | 
| 55 | 
         
            -
             
     | 
| 56 | 
         
            -
            for message in st.session_state.messages:
         
     | 
| 57 | 
         
            -
                with st.chat_message(message["role"]):
         
     | 
| 58 | 
         
            -
                    st.markdown(message["content"])
         
     | 
| 59 | 
         
            -
             
     | 
| 60 | 
         
            -
             
     | 
| 61 | 
         
            -
            prompt = st.chat_input("Enter Your Question:")
         
     | 
| 62 | 
         
            -
             
     | 
| 63 | 
         
            -
             
     | 
| 64 | 
         
            -
            if prompt:
         
     | 
| 65 | 
         
            -
             
     | 
| 66 | 
         
            -
                with st.chat_message("user"):
         
     | 
| 67 | 
         
            -
                    st.markdown(prompt)
         
     | 
| 68 | 
         
            -
                st.session_state.messages.append({"role":"user","content":prompt})
         
     | 
| 69 | 
         
            -
                
         
     | 
| 70 | 
         
            -
                reply= query_engine.query(prompt)
         
     | 
| 71 | 
         
            -
                response = user_data(function_name=reply)
         
     | 
| 72 | 
         
            -
             
     | 
| 73 | 
         
            -
                with st.chat_message("assistant"):
         
     | 
| 74 | 
         
            -
                    st.write_stream(response)
         
     | 
| 75 | 
         
            -
                print("working!!")
         
     | 
| 76 | 
         
            -
                st.session_state.messages.append({"role":"assistant","content":reply})
         
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         |