Spaces:
Runtime error
Runtime error
import gradio as gr | |
import copy | |
import time | |
import ctypes #to run on C api directly | |
import llama_cpp | |
from llama_cpp import Llama | |
from huggingface_hub import hf_hub_download #load from huggingfaces | |
llm = Llama(model_path= hf_hub_download(repo_id="TheBloke/OpenAssistant-Llama2-13B-Orca-v2-8K-3166-GGML", filename="openassistant-llama2-13b-orca-v2-8k-3166.ggmlv3.q6_K.bin"), n_ctx=2048) #download model from hf/ n_ctx=2048 for high ccontext length | |
history = [] | |
pre_prompt = " The user and the AI are having a conversation : " | |
def generate_text(input_text, history): | |
print("history ",history) | |
print("input ", input_text) | |
temp ="" | |
if history == []: | |
input_text_with_history = f"{pre_prompt}"+ "\n" + f"<|prompter|> {input_text} " + "\n" +" <|assistant|>" | |
else: | |
input_text_with_history = f"{history[-1][1]}"+ "\n" | |
input_text_with_history += f"<|prompter|> {input_text}" + "\n" +" <|assistant|>" | |
print("new input", input_text_with_history) | |
output = llm(input_text_with_history, max_tokens=1024, stop=["<|prompter|>", "<|endoftext|>"], stream=True) | |
for out in output: | |
stream = copy.deepcopy(out) | |
print(stream["choices"][0]["text"]) | |
temp += stream["choices"][0]["text"] | |
yield temp | |
history =["init",input_text_with_history] | |
demo = gr.ChatInterface(generate_text, | |
title="LLM on CPU", | |
description="Running LLM with https://github.com/abetlen/llama-cpp-python. btw the text streaming thing was the hardest thing to impliment", | |
examples=["Hello", "Am I cool?", "Are tomatoes vegetables?"], | |
cache_examples=True, | |
retry_btn=None, | |
undo_btn="Delete Previous", | |
clear_btn="Clear",) | |
demo.queue(concurrency_count=1, max_size=5) | |
demo.launch() | |