Spaces:
Sleeping
Sleeping
from fastapi import FastAPI, HTTPException, File, UploadFile | |
from fastapi.responses import JSONResponse | |
from io import BytesIO | |
from PIL import Image | |
import torch | |
from torchvision import transforms | |
import os | |
from .model import MalwareNet, malware_classes | |
app = FastAPI() | |
def preprocess_image(image_data): | |
image = Image.open(BytesIO(image_data)).convert("RGB") | |
preprocess = transforms.Compose([ | |
transforms.Resize((224, 224)), | |
transforms.ToTensor(), | |
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) | |
]) | |
return preprocess(image).unsqueeze(0) | |
def load_model(): | |
model = MalwareNet() | |
base_dir = os.path.dirname(os.path.abspath(__file__)) | |
model_location = os.path.join(base_dir, '../model/malwareNet.pt') | |
state_dict = torch.load(model_location, map_location=torch.device('cpu'), weights_only=True) | |
model.load_state_dict(state_dict) | |
model.eval() | |
return model | |
async def predict(file: UploadFile = File(...)): | |
try: | |
# Read file bytes | |
image_data = await file.read() | |
# Preprocess the image | |
img_tensor = preprocess_image(image_data) | |
# Load the model and make the prediction | |
model = load_model() | |
with torch.no_grad(): | |
prediction = model(img_tensor) | |
# Get the predicted class | |
predicted_class = malware_classes[torch.argmax(prediction).item()] | |
return JSONResponse(content={"prediction": predicted_class}) | |
except Exception as e: | |
raise HTTPException(status_code=500, detail=f"Error processing the image: {e}") | |
if __name__ == "__main__": | |
import uvicorn | |
uvicorn.run( | |
"src.serve:app", | |
host=os.environ.get("HOST", "localhost"), | |
port=int(os.environ.get("PORT", 5000)), | |
reload=True, | |
) |