Spaces:
Sleeping
Sleeping
import os | |
import json | |
import logging | |
import typing as t | |
import gradio as gr | |
from huggingface_hub import InferenceClient | |
logging.basicConfig( | |
level=logging.INFO, | |
format="%(asctime)s - %(levelname)s - %(message)s", | |
) | |
logger = logging.getLogger(__name__) | |
HF_API_TOKEN = os.getenv("HF_API_TOKEN") | |
MODEL_REPO_ID= "google/gemma-2-9b-it" | |
if HF_API_TOKEN is None: | |
logger.error("HF_API_TOKEN environment variable is not set.") | |
raise ValueError("Error: HF_API_TOKEN environment variable is not set.") | |
def build_messages(input_json: str) -> t.Sequence[t.Mapping[str, str]]: | |
data_structure = ( | |
"You are given a restaurant menu in Spanish. You MUST return a single valid JSON in this format:\n" | |
"Menu Format:\n" | |
"<menu> ::= '{' \"restaurant_name\": <string>, \"categories\": [ <category>* ] '}'\n" | |
"<category> ::= '{' \"category\": <string>, \"items\": [ <item>* ] '}'\n" | |
"<item> ::= '{' \"name\": <string>, \"price\": <number>, \"description\": <string> }'\n" | |
) | |
instructions = ( | |
"Requirements:\n" | |
"1. **Translate ALL Spanish text into English**, including:\n" | |
" - restaurant_name (only if it's in Spanish).\n" | |
" - All category names.\n" | |
" - All item names.\n" | |
" - Any Spanish words in the final descriptions.\n\n" | |
"2. If an item name is a distinct dish with no direct English equivalent, " | |
" **still attempt** an English literal translation, or provide a parenthetical explanation if needed.\n\n" | |
"3. For every item, add a new field called description in **concise, appetizing English**.\n\n" | |
"4. **Do not** change or remove existing fields. The only added field is description.\n\n" | |
"5. **Do not** change meaning or make up information." | |
"6. Return **only** the JSON object. **No markdown**, no code fences, no extra text.\n" | |
"7. Ensure the output is **valid JSON** with correct brackets, commas, and quotes.\n\n" | |
) | |
system_message = data_structure + instructions | |
user_message = ( | |
"Process the following menu:\n\n" | |
f"{input_json}" | |
) | |
return [ | |
{"role": "user", "content": system_message + user_message}, | |
] | |
def process_menu(input_text: str) -> str: | |
client = InferenceClient(model=MODEL_REPO_ID, token=HF_API_TOKEN) | |
messages = build_messages(input_text) | |
logger.info("Generating response from the model.") | |
response = client.chat_completion( | |
messages, | |
max_tokens=2048, | |
temperature=0.1, | |
seed=42, | |
) | |
if response is not None and response.choices is not None: | |
content = response.choices[0].message.content | |
logger.info(response) | |
logger.info(content) | |
parsed = json.loads(content) | |
logger.info("Parsed JSON successfully.") | |
return json.dumps(parsed, indent=2, ensure_ascii=False) | |
def process_data(data: t.Any) -> str: | |
logger.info("Reading input file: %s", data) | |
input_name = os.path.basename(data) | |
preprocessed_name = "preprocessed_" + input_name | |
with open(data, "r", encoding="utf-8") as raw_data: | |
menu = raw_data.read() | |
logger.info("Processing the menu data through the model.") | |
preprocessed_data = process_menu(menu) | |
logger.info("Writing preprocessed data to file: %s", preprocessed_name) | |
with open(preprocessed_name, "w", encoding="utf-8") as temp_data: | |
temp_data.write(preprocessed_data) | |
logger.info("Processing complete. Preprocessed file created: %s", preprocessed_name) | |
return preprocessed_name | |
with gr.Blocks() as demo: | |
gr.Markdown("# Restaurant Menu Processor") | |
gr.Markdown( | |
"Upload a JSON file containing a restaurant menu in Spanish. " | |
"This tool will translate the menu into English and add descriptions." | |
) | |
with gr.Row(): | |
input_file = gr.File(label="Upload Restaurant Menu JSON (Spanish)") | |
output_file = gr.File(label="Download Augmented Menu JSON (English)") | |
process_button = gr.Button("Process Menu") | |
process_button.click(process_data, inputs=input_file, outputs=output_file) | |
demo.launch() | |